
Forecasting Interactive Dynamics of Pedestrians with Fictitious Play

Wei-Chiu Ma1 De-An Huang2 Namhoon Lee3 Kris M. Kitani4

1MIT 2Stanford 3Oxford 4CMU

Abstract

We develop predictive models of pedestrian dynamics by

encoding the coupled nature of multi-pedestrian interaction

using game theory and deep learning-based visual analysis

to estimate person-specific behavior parameters. We focus

on predictive models since they are important for develop-

ing interactive autonomous systems (e.g., autonomous cars,

home robots, smart homes) that can understand different

human behavior and pre-emptively respond to future human

actions. Building predictive models for multi-pedestrian in-

teractions however, is very challenging due to two reasons:

(1) the dynamics of interaction are complex interdependent

processes, where the decision of one person can affect oth-

ers; and (2) dynamics are variable, where each person may

behave differently (e.g., an older person may walk slowly

while the younger person may walk faster). We address

these challenges by utilizing concepts from game theory

to model the intertwined decision making process of mul-

tiple pedestrians and use visual classifiers to learn a map-

ping from pedestrian appearance to behavior parameters.

We evaluate our proposed model on several public multi-

ple pedestrian interaction video datasets. Results show that

our strategic planning model predicts and explains human

interactions 25% better when compared to a state-of-the-art

activity forecasting method.

1. Introduction

The goal of this work is to imitate the predictive abil-

ities of human cognition, by building a predictive model

that takes into account complex reasoning about: (1) the

interdependent interactions of multiple pedestrians and (2)

important visual cues needed to infer individual behavior

patterns. Consider the complexities of predicting the trajec-

tories of multiple pedestrians from a single image, as de-

picted in Figure 1 where four pedestrians are walking on

the street. Given this single image, what would one fore-

cast as their future trajectories? A simple prediction would

be that all people will walk in a straight line (i.e., the min-

imum distance) to their goal as in Figure 1(b). This strat-

egy, however, might lead to collisions between pedestrians

(a) Input Image (b) Prediction 1

(c) Prediction 2 (d) Our Prediction
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Figure 1. Can you forecast their future behavior? A single image

contains rich information about future trajectories.

(e.g., the young man (yellow) and the older couple (green)

may collide). A more thoughtful model might consider the

possibility that one or more pedestrians will alter their tra-

jectory based on their prediction of other pedestrians (Fig-

ure 1(c)). Going further, a more informed model might at-

tempt to take into account the observation that on average,

elderly couples tend to walk at a slower rate, while a young

man is more likely walk quickly and take pre-emptive ma-

neuvers (Figure 1(d)). Taking these observations into con-

sideration, we might hypothesize that the younger man is

more likely to exemplify preemptive avoidance behaviors

and weave through the two pedestrians. This illustration

serves to highlight the complex reasoning that is involved

in predicting the walking trajectories of several people given

limited amount of information (in our scenario a single im-

age). Our goal is to mimic – computationally – this ability

to reason about the dynamics of interactive social processes.

Developing computational models for interactive dy-

namics among humans, however, is an extremely challeng-

ing task. This requires a deep understanding of the complex

and often subtle norms of human interactions. Pioneering

works have attempted to address this by parameterizing hu-

man behaviors with models such as social forces [13, 30],

potential fields [2], and flow fields [3, 4]. Yet most of these

works are performing either long-term prediction in static
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environments or short-term prediction in dynamic environ-

ments. They do not address the interactions that could occur

in the distant future, and do not resolve the long-term pre-

diction problem in dynamic environments. To address these

complexities of multi-agent future prediction, we propose a

game-theoretic approach.

We directly address the interdependent nature of hu-

man interactions using the language and concepts of multi-

player game theory. In particular, we utilize Brown’s [8]

classical notion of Fictitious Play to model the interac-

tion between multiple pedestrians. Brown’s fictitious play

model assumes that each player will take the best next ac-

tion based on an observed empirical distribution over the

past strategies of other players. As we will show, the multi-

player game model has strong parallels to multi-pedestrian

forecasting, as each pedestrian pre-emptively plans her path

according to beliefs about how other pedestrians will move.

To individualize the pedestrian model, we train a deep

learning-based classifier to learn visual cues that are indica-

tive of behavior patterns (e.g., age can affect speed). We use

the classifier to estimate each pedestrian’s velocity based

on sub-population statistics. Furthermore, we visually es-

timate the initial body orientation such that the model is

more likely to predict motion aligned to body direction at

the start of a predicted trajectory. In this way, we integrate

visual analysis with our prediction model. Figure 2 shows

the overview of our approach.

Contributions: We present a novel technique to forecast

multi-pedestrian trajectories from a single image. First, we

explicitly model the interplay among multiple people by

drawing connections between game theory and optimal con-

trol. To the best of our knowledge, Fictitious Play has never

been applied in the context of modeling pedestrian motions.

Second, we address the variability among people by build-

ing individualized predictive pedestrian models. We are the

first attempt to infer physical properties of each pedestrian

from appearance for multi-agent forecasting.

2. Related Work

There has been growing interest in developing computa-

tional models of human activities that can extrapolate un-

seen information and predict future unobserved activities

[34, 38, 22, 33, 18, 42, 40, 37, 15, 14, 16, 17, 35, 9, 49,

43, 36, 32]. In the context of pedestrian dynamics, Hel-

bing and Molonar [13] first integrated the concept of the

social force model into a computational framework for un-

derstanding pedestrian dynamics. Their work incorporated

ideas of goals, desired speed and the repulsion due to terri-

torial affects of social forces. In computer vision, the social

force model has been used to help aid visual tracking [30]

and anomaly detection [26]. More recent work has focused

on discovering the underlying potential field by observing

human behavior such as patterns of motions [2], mutual
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Figure 2. Model Overview. Personalization pathway (top) es-

timates physical properties for each pedestrian based on visual

information and statistics from videos. Game theory pathway

(bottom) takes as input: (1) estimated properties, (2) individual-

ized motion model per pedestrian. As output, it forecasts multi-

pedestrian interactions/trajectories using Fictitious Play.

gaze or regions of repulsion. In high-density crowds, the

patterns of motion of people can be used to infer an under-

lying flow field for a given scene [3, 4] and the interaction

between stationary crowds and pedestrians can be used to

predict pedestrians’ future motions [46]. The global motion

or the joint attention of sparse groups of people (e.g., sports

scenarios) can also be used to infer basins of attractions or

socially salient hot spots [19, 29]. Patterns of avoidance can

also be used to learn the hidden rewards or costs of physical

spaces [21, 44, 41].

To make reliable predictions about the long-term fu-

ture, many techniques often assume a static environment

[21, 41]. In a static environment, the cost topology is con-

stant, where the environment and features do not change

over time. In dynamic environments, the cost topology of

the state space is constantly changing which means that any

computational model must be continually updated. When

the cost topology can be accurately updated over time, it

can be used for short-term prediction [30, 11, 20] (or at

least until the next update). As such, these techniques have

been very effective for tracking multi-pedestrian trajecto-

ries. While methods have been proposed for long-term

prediction in static environments and short-term prediction

in dynamic environments, the task of long-term prediction

in dynamics environments remains relatively unexplored in

human activity analysis except [1, 24, 18]. Concurrent with

our work, [1] introduced a data-driven approach to implic-

itly encode the interactive dynamics among people. Their

model, however, focused only on trajectory data. They ig-

nored the rich information underlying the visual data. In

[24, 18], the complex and intertwined interactions between

agents is either ignored [18] or restricted to the perspec-

tive of a single agent (only the wide receiver in [24]). In

constrast, we directly address the interdependent nature of

human interactions using Fictitious Play and perform long-

term prediction for all of the agents in the scene.
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Figure 3. Left: Visualization of Fictitious Play with three pedestrians. Right: Distributions over states sampled from U
(t)
n and µ

(t)
¬n.

3. Forecasting Multi-Pedestrian Trajectories

Given a single image and initial pedestrians detections,

we aim to develop a predictive model that can forecast plau-

sible future trajectories for all pedestrians. To do this, we

must model the complex predictive interplay between mul-

tiple pedestrians, while also considering individual differ-

ences that might impact behavior, to obtain accurate pre-

dictions. To address these challenges, we utilize concepts

from game theory to model the intricately coupled inter-

active prediction process. We also leverage recent success

of deep neural networks to infer individual behavior mod-

els for each pedestrian from visual evidence. We describe

how game theory can be used to frame our multi-pedestrian

forecasting problem in Section 3.1 and present a method for

mapping the visual appearance of pedestrians to estimate

person-specific behavior parameters in Section 3.4.

Notation. We will define the state space (the ground

plane) as a 2D lattice, where each position is denoted by

x = [x, y] ∈ X . A pedestrian can make a transition

from state to state by taking an action a ∈ A which

in the case of a 2D lattice (grid world) is the velocity

[ẋ, ẏ]. A trajectory is a sequence of state-action pairs,

s = {(x1,a1), . . . , (xK ,aK)}. Each state x has an asso-

ciated vector of features f(x) = [f1(x) . . . fJ(x)], where

fj(x) represent properties of that state such as the output

of a visual classifier, the distance to an object or predicted

presence of another pedestrian.

3.1. Forecasting Interactions as Fictitious Play

Game theory [27] is a widely applicable discipline that

aims to model adversarial and collaborative interactions be-

tween rational decision-makers. It has been applied to a

range of disciplines including economic theory [31], pol-

itics [7] and computer science [28]. More importantly, it

is well-suited for modeling our multi-pedestrian prediction

scenario, as the social dynamics of collision avoidance can

be modeled as a collaborative multi-player game. To fore-

cast long-term trajectories of multiple pedestrians, we uti-

lize Fictitious Play (FP) [8], where we model each pedes-

trian to take a path based on her own predictions of how

other pedestrians will move. By incrementally forward sim-

ulating pedestrian paths with this model, we can obtain a

distribution over possible future paths over multiple people.

Formally, each pedestrian n ∈ {1, . . . , N} has the abil-

ity to choose a macro-action sn ∈ S from a set of macro-

actions. In our scenario, a macro-action sn is a very short

trajectory whose length Ln depends on the speed of the

pedestrian n (detailed in Section 3.4). Each pedestrian

has an utility function Un[sn, µ¬n(s¬n)] that maps a given

macro-action to a value Un : sn → R. Intuitively, the

utility function Un describes the reward of taking a cer-

tain path. If there is a low potential of collision, its util-

ity will be high. Notice that the Un is also dependent on

the forecasted distributions over macro-actions of all other

pedestrians µ¬n(s¬n). This is needed to compute the po-

tential of collision with other pedestrians. The set of trajec-

tories s¬n is a set of macro-actions of all other pedestrians,

s¬n = {sm|m 6= n}. We visualize a distribution over states

sampled from µ¬n in Figure 3 (right).

Algorithm 1 describes the process of Fictitious Play. For

every forecasting period τ , each pedestrian n forms beliefs

about the future actions of other pedestrians by updating

the empirical distribution µ
(t)
¬n using the function UPDA-

TEEMPIRICAL. Then the distribution µ
(t)
¬n is encoded as

social feature f
(t)
n,soc using the function ENCODETOFEA-

TURE. The utility function of the n-th pedestrians is up-

dated according to this new feature with the function UP-

DATEUTILITY. In the final step, we forecast the movement

of the pedestrian with the function TAKEMACROACTION.
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Algorithm 2: ENCODETOFEATURE

Input : Empirical distribution µ
(t)
¬n, State visitation distribution

D
(t−1)
¬n

Output: Feature vector f
(t)
n,soc

f
(t)
n,soc = 0

for m = 1 : N and m 6= n do

D
(t:t+Lm)
m ← TAKEMACROACTION(µ

(t)
m , D

(t−1)
m )

D̄m =
∑t+Lm

l=t
D

(l)
m

f
(t)
n,soc = f

(t)
n,soc + D̄m

end

Algorithm 3: TAKEMACROACTION

Input : Empirical distribution µ
(t)
n , Prior state visitation

distribution D
(t−1)
n

Output: Future state visitation distributions D
(t:t+Ln)
n

π(a|x)← COMPUTEPOLICY(µn)
for l = t : t+ Ln do

D
(l)
n (x′) =

∑
a,x P (x′|x,a)×

π(a|x)D(l−1)(x)
∀x′

end

Algorithm 1: Multi-Pedestrian Fictitious Play

Input : Initial state x0,n∀n, τ

Output: Forecasted cumulative state visitation distribution {D̄n}

D
(0)
n (x0,n) = 1 for all n

for t = τ : τ : T do

for n = 1 : N do

µ
(t)
¬n ← UPDATEEMPIRICAL({µ

(t−τ)
m |m 6= n})

(Eq.1)

f
(t)
n,soc ← ENCODETOFEATURE(µ

(t)
¬n, D

(t−τ)
¬n )

(Alg.2)

U
(t)
n ← UPDATEUTILITY(f

(t)
n,soc)

(Eq.2)

D
(t:t+Ln)
n ← TAKEMACROACTION(U

(t)
n , D

(t−τ)
n )

(Alg.3)

D̄n = D̄n +
∑t+τ−1

l=t
D

(l)
n

end

end

This process is repeated for T time steps.

UPDATEEMPIRICAL. Under the assumptions of ficti-

tious play, the empirical distribution over opponent macro-

actions µ¬n(s¬n) is typically computed by counting how

many times each macro-action was chosen by each player.

In our case, we need to describe a distribution over trajec-

tories and so we use a parameterized form of the empiri-

cal distribution (i.e., a maximum entropy distribution). The

empirical distribution over macro-actions of all other pedes-

trians is decomposed into a product of distributions for each

pedestrian µ¬n(s¬n) ∝
∏

m 6=n µm(sm). Each distribution

is parametrized by a maximum entropy probability (also

called Boltzmann or Gibbs) distribution,

µm(sm) ∝ exp
∑

x∈sm

θ⊤fm(x), (1)

where fm(x) are the features of a state x along the trajec-

tory sm for the pedestrian m, which are weighted by the

vector of parameters θ. We will explain in Section 3.2 how

the parameters θ of the empirical distribution are learned

from a dataset of demonstrated pedestrian behavior.

ENCODETOFEATURE. This function maps µ
(t)
¬n to the fea-

ture vector f
(t)
n,soc. Intuitively, this function predicts how all

other pedestrians will move in the next few time steps and

converts that predicted distribution into a state feature. For

each pedestrian m, we compute their state visitation distri-

bution D
(t:t+Lm)
m , which describes the likelihood of pedes-

trian m being in a certain location at a certain time step. The

state visitation distributions of all other pedestrians D̄¬n are

then summed together to generate the state feature f
(t)
n,soc.

UPDATEUTILITY. In order to predict how each pedestrian

will move over a sequence of time steps, and to compute

how those predictions will affect the predictions of other

pedestrian, we need to use a time-varying utility function

for each pedestrian n,

U (t)
n [sn, µ

(t)
¬n(s¬n)] ∝ exp

∑

x∈sn

θ⊤f (t)
n (x). (2)

Notice that the utility function is also a maximum en-

tropy distribution, where the empirical distribution of all

other pedestrians µ
(t)
¬n(s¬n) has been incorporated through

the feature vector f (t)
n (x) (details in Section 3.3). The util-

ity function is updated every τ time steps, the frequency at

which each pedestrian makes predictions about the move-

ment of others. A distribution over states sampled from Un

in illustrated in Figure 3 (right).

It is important to make a connection between the utility

function U and the empirical distribution µ at this juncture.

In our formulation, Um is exactly equivalent to µm(sm). In

general, U need not be a probability distribution, as it sim-

ply describes the value (reward) of one macro-action over

another. In contrast, the empirical distribution µ is a prob-

ability distribution by construction and it describes which

macro-action the opponent is likely to take. More impor-

tantly, the utility function U helps us to understand the de-

pendency of the predicted path of pedestrian n on the pre-

dicted path of all other pedestrians ¬n. When we use the

utility function to forecast the path of a single agent, that

prediction influences the predicted path of all other predic-

tions. This interplay between forecasted paths is precisely

what we set out to model.

TAKEMACROACTION. This function takes the current

empirical distribution µ
(t)
n and the prior state visitation dis-

tribution D
(t−1)
n to compute the future state visitation dis-

tribution D
(t:t+Ln)
n . Intuitively, this function forward simu-

lates pedestrian motion Ln steps into the future. To compute

the future state visitation distribution D
(t:t+Ln)
n , a policy
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π is first derived from the empirical distribution (this pro-

cess described in Section 3.2). Using that policy, we iter-

atively compute how the prior state distribution D
(t−1)
n (x)

will change in over the next Ln time steps.

As a more concrete example, Figure 3 illustrates the

procedure where we employ fictitious play to model the

interactions within three pedestrians. The three pedestri-

ans, respectively colored in red, green, and yellow, se-

quentially make predictions (i.e., fictitious play) of others’

macro-actions based on µn(s¬n) and then take the macro-

action that maximize one’s utility function. The forecasted

state visitation distribution D̄n (detailed in Section 3.3) of

each pedestrian is expressed in the corresponding color and

grows incrementally over time.

3.2. A DecisionTheoretic Pedestrian Model

We now explain how to learn the maximum entropy dis-

tribution which is used for both the utility function Un and

independent empirical distributions µm. As we have al-

luded to earlier, the probability of generating a trajectory

s is modeled to be drawn from a maximum entropy dis-

tribution, where the probability is proportional to the ex-

ponentiated sum of weighted features encountered over the

trajectory,

P (s;θ) =
1

Z(θ)
exp

∑

x∈s

θ⊤f(x), (3)

where Z is the normalization function (or partition func-

tion), θ is a vector of parameters and f(x) is a vector of

features at state x.

In order to learn the parameters θ of this model from a

set of demonstrated pedestrian trajectories, we utilize max-

imum entropy inverse optimal control [48]. We first make

the assumption that each pedestrian is a rational agent and

plans a path according to an underlying Markov Decision

Process (MDP). The MDP describing a pedestrian n is de-

fined by an initial state distribution Pn(x0), a transition

model Pn(x
′|x,a) and a reward function R

(t)
n (x). Follow-

ing [21], the reward function is further defined as a weighted

combination of features, R
(t)
n (x) = θ⊤f (t)

n (x). Note how-

ever that our reward function R
(t)
n (x) is time indexed, as the

feature vector f (t)
n (x) will be used to encode information

about changes in predicted behaviors of other pedestrians.

To learn the parameters θ using maximum entropy IOC

[48], we implement a gradient descent procedure that first

computes a policy π(a|s;θ) based on the current estimate

of θ. The we compute the gradient update using difference

between the estimated cumulative feature count and empiri-

cal cumulative feature count over demonstrated trajectories

given that policy. When the features accumulated over tra-

jectories generated by the MDP model converge to values

similar to the empirical feature counts of the training data

+

Predicted occupancy maps                by the young guy on the left bottom. Social Compliance

＝
f (t)
n,soc(x)D̄¬n(x)

Figure 4. The green box demonstrates how a pedestrian forms

beliefs about others µ
(t)
¬n and encode such information into social

compliance feature f
(t)
n,soc(x). Red indicates high reward and blue

indicates low reward.

(i.e., likelihood under the maximum entropy distribution is

maximized), the algorithm has obtained an optimal set of

parameters θ̂, which will be used to define the empirical

distribution µ.

An optimal policy for the maximum entropy distribu-

tion P (s;θ) can be computed as π(a|s) = exp{Q(x,a)−
V (x)}, where the state-action soft value function Q(x,a)
and state soft-value function V (x) can be computed by

iterating the soft-maximum Bellman update equations:

Q(x,a) = θ⊤f(x) + EP (x′|x,a)[V (x′)] and V (x) =
softmaxaQ(x,a). We call this procedure COMPUTEPOL-

ICY in Algorithm 2. Recall that in our scenario, the pol-

icy is time-varying since the features of the states change

over time. Therefore, the policy for each pedestrian must

be recomputed each time features are updated, i.e., every

forecasting period τ .

3.3. Features for Forecasting

In this section, we first show how the policy can be

used to design the time dependent social compliance feature

f
(t)
n,soc, which captures the interdependent reasoning process

among people by encoding the empirical distribution over

trajectories of all other agents µ
(t)
n (s¬n) into it. Then we

build upon prior work [21] and introduce the semantic scene

features which encode the intuition that rational agents will

take into account the physical layout of the scene as they

plan their future trajectories. Finally, we estimate the initial

body orientation of each agent to encourage predictions that

are aligned with body directions.

Social Compliance Feature: Given a policy π(a|x), we

can generate a state visitation distribution Dn of pedestrian

n for trajectories of length Ln by recursively computing:

D(l)
n (x′) =

∑

a,x

P (x′|x,a)π(a|x)D(l−1)
n (x), (4)

where D
(0)
n (x) needs to be initialized to a distribution over

start locations. Since D
(l)
n (x) is defined over the entire state

space, it is the same size as the state space. We can sum vis-

itation counts over time, D̄n(x) =
∑

l D
(l)
n (x) to generate

a cumulative distribution over states. The cumulative state

visitation distribution D̄n(x) represents the states that are

likely to be occupied by pedestrian n when sampling from

the empirical distribution µn(sn). By aggregating the cu-

mulative visitation distribution for all pedestrian except n,
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we can obtain a predicted occupancy map of all pedestri-

ans in the environment, D̄¬n(x) =
∑

m 6=n D̄m(x), which

we will use to form our social compliance feature f
(l)
n,soc.

Formally, this quantity encodes the empirical distribution

µ¬n(s¬n) passed to the utility function (Equation 2). The

process is summarized in Algorithm 2.

More intuitively, this quantity describes a social force

field. Based on Helbing and Molonar’s model of social

forces [13] we define several social distance features that

places a force field of varying size around the predicted

trajectories of all other pedestrians in the environment. In

particular, we defined three different sized force-fields, that

roughly corresponds to Hall’s proxemics zones [12], to en-

code a range of physical distances that people may main-

tain when walking in crowded scenes. Note that the social

compliance features f
(t)
soc(x) are indexed by time as the pre-

dicted paths of other pedestrians changes over time. It is

also interesting to note that our feature naturally supports

group behavior analysis, even though we do not explicitly

model it as in [45]. When summing over the cumulative dis-

tribution of all other pedestrians, the states nearby groups

will have larger visitation counts (i.e. more likely to be oc-

cupied), resulting in a more collision prone area. Figure 4

shows a situation where the area in front of the couple is a

high potential collision area and thus has a lower reward.

Neighborhood Occupancy: This feature is a measurement

of the amount of obstacles in a local neighborhood around

a certain state. We calculate the number of pixels labeled as

obstacles in a 5 × 5 grid and normalize it to provide a soft

estimate of whether a state is a obstacle or not. The feature

encodes how close pedestrians will walk near static objects

in the scene. The neighborhood occupancy feature is de-

noted as focc(x) which is not time varying as we assume

the geometry of the scene to be static.

Distance-to-Goal: The feature fdog(x) captures a pedes-

trian’s desire to approach his goal quickly by computing the

Euclidean distance between a state x and the goal xg .

Body Orientation: Since a pedestrian’s body orientation is

a strong cue of the direction in which she will walk [10],

we train a CNN (described in details in Section 3.4) to pre-

dict the initial walking direction of a pedestrian. We use

the value of cosine distance minus one over the 8 connected

neighbors centered at current pedestrian location. The value

is greatest (0) in the direction of the predicted velocity di-

rection and is the lowest (−2) in the opposite direction. The

body orientation feature is denoted as fbod(x).

3.4. Walking Characteristics from Appearance

We further enhance the predictive power of our multi-

pedestrian framework by allowing the model to maintain

individualized walking models for each pedestrian based on

appearance. In this section, we focus on visual information

which conveys salient cues about how each individual in the

Town Centre Dataset Zara Dataset LIDAR Trajectory Dataset

Figure 5. An overview of the datasets we used in the experiments.

scene may walk. For example, when we walk in crowds, the

initial body orientation of a person may inform us of which

direction that individual might walk. We may also perform

high-level visual inference, predicting that an elderly couple

might walk slow or a young business man might walk with

a brisk pace. We propose using visual classifiers to iden-

tify various attributes of a pedestrian, and then map those

attributes to walking direction and speed.

To extract attributes from a pedestrian’s visual appear-

ance, we make use of a deep learning model. In particular,

we employ a network structure similar to [23], but modify

the top layer to generate three classification outputs: (1) age

(old or young), (2) gender (male or female) and (3) body

orientation (8 discretized direction). We train all three top

layer classifiers jointly, as previous work has shown that

multi-task learning helps to constrain the parameter learn-

ing [39, 47]. The predicted body orientation is used to gen-

erate the body orientation feature mentioned in Section 3.3,

while the output of the age and gender classifiers are used

to build individualized pedestrian models.

To be concrete, we use the soft probabilistic output of the

age and gender classifiers to estimate an individualized ve-

locity parameter. For each pedestrian n, we compute the in-

dividual’s velocity vn as the weighted average over gender

and age velocity averages, i.e. vn =
∑

a wav
stats
a , where

a ∈ {male, female, old, elder} denotes the attributes, wa

denotes the softmax output from deep net, and vstatsa rep-

resents the average speed of pedestrians with attribute a.

The individualized speed vn is then incorporated into our

model by multiplying the forecasting window size W , i.e.

Ln = W×vn. Recall that Ln is the length of macro-actions

sn and vn denotes speed, W can thus be interpreted as how

many time steps into the future one will predict about oth-

ers. In general, given a fixed W , the faster a pedestrian

walks, the larger his occupancy map D̄n =
∑t+W∗vn

l=t D
(l)
n

may be. We note that when speed information is not avail-

able, we employ a constant speed C for every pedestrian,

i.e., Ln = W × C ∀n. We also tried regressing velocity

directly from appearance, but in practice deep nets fail to

learn discriminative features for direct regression.

4. Experiments
We analyze our model from various aspects. Following

[21], we first assume the destinations are known to eval-

uate our forecasting performance in isolation. To validate

the effectiveness of our model in the real world, we later

perform unconstrained experiments with unknown goals.
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NLL nMDP[21] MDPCV mTA[30] FP FP + Speed

Zara [25] 46.5396 46.9549 43.3834 42.1426 -

Town Centre [5] 14.4797 14.4011 14.2471 12.5804 10.892

LIDAR Trajectory 92.5579 93.1747 91.9748 87.4680 -

Zara (no-dest) [25] 98.7343 97.6634 92.8271 88.5693 -

Town Centre (no-dest) [5] 33.8454 33.3213 31.5433 27.5732 27.2136

LIDAR Trajectory (no-dest) 173.643 175.384 169.782 161.338 -

SCR nMDP[21] MDPCV mTA[30] FP FP + Speed

Zara [25] 0.144 0.114 0.065 0.013 -

Town Centre [5] 0.215 0.213 0.120 0.052 0.049

LIDAR Trajectory 0.133 0.105 0.056 0.009 -

Zara (no-dest) [25] 0.186 0.175 0.095 0.021 -

Town Centre (no-dest) [5] 0.323 0.281 0.170 0.093 0.066

LIDAR Trajectory (no-dest) 0.197 0.173 0.082 0.022 -

Table 1. Comparative analysis between different approaches. Smaller values are better.

We evaluate our model on three different pedestrian in-

teraction datasets: the Zara Dataset [25], the Town Cen-

tre Dataset [5], and the LIDAR Trajectory Dataset. The

first two datasets represent real world crowded settings with

non-linear trajectories. To show that our model can also

work with other modes of trajectory data, we further col-

lected a LIDAR-based Trajectory Dataset, consisting of 20

interactive trajectories. Subjects are initialized at various

start locations in a small room (7m×7m) with a few obsta-

cles. They are then directed to walk towards a goal location

without colliding with other pedestrians in the scene. We

show samples of each dataset in Figure 5.

4.1. Metrics and Baselines

Negative Log Loss (NLL). The negative log loss computes

the likelihood of drawing the demonstrated trajectory. It

is defined as NLL(s) = −
∑

t log π
(t)(a(t)|x(t)), where

trajectory s is a sequence of state-action pairs (x, a).

State Collision Rate (SCR). While the NLL is appropriate

for evaluating single agent forecasting results, it does not

explicitly penalize colliding predicted paths in the multi-

agent forecasting case. To encode the notion of a fu-

ture collision, we define the State Collision Rate SCR =∑
t

∏
n D

(t)
n (x), where n denotes a pedestrian ID, and

D
(t)
n (x) represents the expected state visit count at state x

at time t, i.e., the probability of being at certain state at a

certain time. By taking into account the distribution of mul-

tiple pedestrians and taking their union, the resulting state

visit count of all agents represents regions of collision.

We compare with the following three baselines:

N-Independent MDP (nMDP). This baseline model is the

approach of [48] applied to images for forecast the trajec-

tory of a single pedestrian [21]. Extending their approach

for our multi-agent scenario, we use N instantiations of

their MDP model and run them in parallel.

MDP + Constant Velocity (MDPCV). The second baseline

model is a modification of the Independent MDP model but

with a collision region features added to the reward func-

tion. By assuming constant velocity, we can compute re-

gions of collision (i.e., the intersection regions of linear mo-

tion models) and encode them using the same way as the

neighborhood occupancy feature.

mTA. Based on the work of Pellegrini et al. [30], the third

approach is a modified Trajectory Avoidance (mTA) model.

In [30] every agent chooses a velocity that minimizes its

energy function at every time step. Formulated as an MDP,

this corresponds to a reward function using only a constant

Young Old Male Female

Average Speed (grids/frame) 1.98 1.25 1.78 1.53

Age Gender Body Direction

Accuracy 82.31% 78.44% 65.60%
Table 2. Top: average speed of people with different visual at-

tributes. Bottom: accuracy of visual pedestrian classification.

feature. As for modeling the social force features (e.g.,

comfortable distance among agents), we use the social com-

pliance features described in Section 3.3. We emphasize

here that this baseline model has less information that the

original model described in [30] where every agent knows

the positions and velocities of others. This information is

not available in our problem setup (i.e., single image input).

4.2. MultiPedestrian Forecasting Performance
To properly evaluate our proposed approach, we apply

our method only on trajectory sequences that demonstrate

strategic reasoning, where multiple pedestrians are actively

avoiding each other as they walk. We obtain 16 multi-

pedestrian trajectory sequences from each dataset [25] and

[5]1. We emphasize here that trajectories of single pedes-

trians simply walking in a straight line are not used, as it is

possible to artificially increase performance by adding more

of these ‘easy’ examples. We compute the metrics with 5-

fold cross validation. The forecasting window size is set

to W = 3 and the forecasting period is τ = 1. The two

parameters are found via grid search, and a detailed anal-

ysis can be found in the supplementary material. Results

are summarized in Table 1. We observe that our fictitious

play based approach outperforms all three approaches with

respect to NLL and SCR. This shows that our iterative pre-

dicting and planning process better predicts human interac-

tions and also generates the most collision-free trajectories.

We further incorporate speed information into our model

using the method mentioned in Section 3.4. We evaluate

the effectiveness of speed information on the Town Cen-

tre dataset as the resolution of the Zara dataset is too low

to extract visual features and the LIDAR-based Trajectory

dataset does not provide any visual features. We collected

≈16K pedestrian patches from the Town Centre Dataset [5],

with three labels for each patch, i.e., age, gender, and body

orientation. The images are split into the corresponding 5-

fold by pedestrians. We train a deep classifier using the net-

work structure in Section 3.4. The performance is shown

in Table 2(bottom). We also computed speed statistics from

1For more details in how we select the trajectories and the results on

the original dataset, please refer to the supplementary material.
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Figure 6. Multi-agent forecasting examples of pre-emptive collision avoidance. Each pedestrian is marked with a colored bounding box,

with corresponding forecasting distribution in the same color. Note that we consider all pedestrians for quantitative experiments but only

visualize forecast distributions for a limited number of pedestrian to improve visualization.

the videos (see Table 2(top)). Using the speed statistics and

the output of the deep network model, we can compute an

individualized model for each pedestrian. As expected, Ta-

ble 1 shows that our model performs better after consider-

ing a pedestrian’s visual appearance and individualize the

predictive model. Selected qualitative results of predicted

trajectories are shown in Figure 6.

Relax Destination Constraints. To show that our model

also work in the real work settings where the final destina-

tion of a pedestrian is not known and needs to be inferred,

we follow [21] to densely generate potential goals on the

map and perform the same forecasting experiment. Re-

sults, denoted as no-dest in Table 1, show that our FP based

approach, which models the interplay and visual evidence,

still consistently outperforms others even without knowing

the destinations ahead of time. The absolute performance

of all models degrade due to uncertainty about the goal.

4.3. Features Analysis

We further evaluate the effects of the features used in our

proposed model. The average NLL and SCR for the Town

Centre dataset using different features are shown in Table

3 (results on other datasets can be found in the supplemen-

tary material). We set forecasting window size W = 3 and

forecasting period τ = 1 as before. The performance of

other approaches are also shown for reference. Note that

nMDP and MDPCV still consider only scene features and

body orientation features even with the social compliance

feature checked, since they cannot handle the dynamics in

the environment. Our model performs identical to nMDP

when considering only semantic scene features and body

orientation features. This result is expected as there are no

social compliance features to change the cost topology over

time. If there is only one agent (which implies there is no

focc fdog fbod fsoc nMDP[21] MDPCV mTA[30] FP FP + Speed
N

L
L

X X 14.48 14.40 14.48 14.48 14.48

X X X 14.45 14.33 14.45 14.45 14.45

X X X 14.48 14.40 14.29 12.65 11.01

X X X X 14.45 14.33 14.25 12.58 10.89

focc fdog fbod fsoc nMDP[21] MDPCV mTA[30] FP FP + Speed

S
C

R

X X 0.215 0.183 0.215 0.215 0.215

X X X 0.211 0.175 0.211 0.211 0.211

X X X 0.215 0.183 0.129 0.046 0.044

X X X X 0.211 0.175 0.120 0.043 0.039

Table 3. Contribution of each feature to our model.

social compliant feature), our proposed model reduces to

nMDP. We emphasize that with the inclusion of the social

compliance feature, our proposed models better explains the

interactions between multiple pedestrians. The FP+Speed

model attains a NLL of 10.892 compared to the next best

performing model mTA at 14.247, resulting in a 23.5% im-

provement in the NLL.

5. Conclusion
We present a novel framework to forecast multi-

pedestrian trajectories from a single image by directly mod-

eling the interplay between multiple people using concepts

from game theory and optimal control. We also develop

various predictive models to show how different modes of

information help to reason about the future actions of multi-

pedestrian scenarios. By building individualized pedestrian

models for each person based on his visual appearance, we

generate more accurate prediction of multi-pedestrian inter-

actions. We have compared our Fictitious Play based ap-

proach with other state-of-the-art algorithms. Our evalua-

tion on multiple pedestrian interaction datasets has shown

that our proposed approach is able to attain more accurate

long-term predictions of pedestrian activity.
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