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Abstract

We present a method for the fast 3D face reconstruction

of people wearing glasses. Our method explicitly and ro-

bustly models the case in which a face to be reconstructed

is partially occluded by glasses. We propose a simple and

generic model for glasses that copes with a wide variety

of different shapes, colors and styles, without the need for

any database or learning. Our algorithm is simple, fast and

requires only small amounts of both memory and runtime

resources, allowing for a fast interactive 3D reconstruction

on commodity mobile phones. The thorough evaluation of

our approach on synthetic and real data demonstrates su-

perior reconstruction results due to the explicit modeling of

glasses.

1. Introduction

In this paper, we target the mobile 3D reconstruction of

human faces that are possibly covered with glasses. Fig. 1

provides an overview of our method. The instant creation

of 3D face reconstructions has a number of applications en-

joying growing demands, such as the creation of 3D selfies

that can be immediately viewed or printed in 3D, the cre-

ation of 3D avatars for augmented or virtual reality appli-

cations, content creation for games or movies, or 3D face

authentication.

Challenges of Mobile Face Reconstruction. In contrast to

many other 3D reconstruction methods, which often rely on

a controlled image acquisition setup, in mobile face recon-

struction we are confronted with a large number of addi-

tional difficulties like significant variations in lighting con-

ditions, higher amounts of noise due to low cost sensors,

motion blur, rolling shutter distortions, image artifacts due

to dirty lenses, non-rigid deformations of the face during

scanning, and finally also fewer computing resources.

Importance of Modeling Eyeglasses. Surprisingly, only

few works in the face reconstruction literature address the

topic of face reconstruction in the presence of glasses even

though a large number of people wear them because they

require a visual aid. Modeling glasses explicitly is benefi-

cial for many applications. An important example is face

Figure 1: Result obtained using our approach. From left

to right: Input image, result mesh, textured result with re-

construction of the glasses. Our approach first segments the

eyeglasses to allow for a plausible reconstruction of the face

while ignoring the depth values measured on the glasses.

authentication. In [46] Sharif et al. have shown that an at-

tacker wearing eyeglasses can easily fool a state-of-the-art

2D authentication system into believing that he is another

individual. Such a simple attack would not work for 3D face

authentication systems because they heavily rely on the 3D

shape, but this study highlights two important facts. First,

the expressiveness and generality of pure 2D approaches is

limited. Second, glasses that cover significant portions of

the face can have a big impact on authentication systems

and hence deserve to be modeled separately. This is cer-

tainly also true for 3D face authentication. In this paper we

try to fill this gap and propose a robust multi-view 3D re-

construction approach for faces and eyeglasses which has

interactive processing times on current commodity mobile

devices.

1.1. Related Work

Our method takes advantage of several computer vision

methods like image segmentation, generic 3D reconstruc-

tion, and statistical shape models. In a 3D setting there are

only few works that address the segmentation and model-

ing of eyeglasses, but there are a number 2D approaches for

which we also give a brief overview.

Eyeglass Detection and Segmentation. In [54], eyeglasses

can be detected, localized as well as removed from a single

input image. In [6], Fourier descriptors are used describe

the boundary of the lenses and a genetic algorithm is used to
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extract their contours. [17] proposes an algorithm for the de-

tection of glasses via roughly aligned bounding boxes rather

than pixel-accurate segmentations. Both works [6, 17] also

give a very good overview on state-of-the-art glasses de-

tection methods from single images. It is important to em-

phasize that these works target a different problem as they

operate on a single color image and have no depth informa-

tion which makes the accurate segmentation of the glasses

more challenging.

Generic Multi-view 3D Reconstruction Algorithms.

Both faces and glasses can also be reconstructed with gen-

eral 3D reconstruction algorithms. The vast majority of

multi-view approaches first estimate the camera parame-

ters in a separate pre-processing step via feature point-

based structure-from-motion techniques [44]. Consecu-

tively, depth maps are usually estimated from two or multi-

ple images for which many methods exist. A good overview

of stereo estimation methods can be found in established

stereo benchmarks [32, 43].

For the fusion of multiple depth maps into a joint 3D

model, various approaches have been proposed, with the

most prominent ones being volumetric approaches fusing

occupancies [23, 25, 27, 28, 55], signed-distance functions

[14,33,52,56], or mesh-based techniques [15,18,20]. Some

of these methods have also been tuned for interactive 3D

reconstruction on mobile devices [26, 34, 45, 50]. In [29], a

generic semantic 3D reconstruction approach was adopted

for face reconstruction by using implicit face-specific shape

priors to reconstruct skin, hair, eyebrows and beard as sep-

arate semantically labeled geometries.

3D Morphable Models (3DMMs). Since the amount of

noise and outliers for generic 3D reconstruction techniques

is generally high, a variety of approaches tailored specially

to face reconstruction have been proposed. A popular ap-

proach are blend shape models or 3D morphable shape

models [1, 5, 21, 36, 37] which represent human faces as a

linear combination of eigenvectors coming from an eigen-

decomposition of a shape database. Additionally, these ap-

proaches have been extended to deal with variations in fa-

cial expressions [2, 8, 9, 22, 42, 51, 53].

3DMMs with Occluders. Both methods [16,47] jointly es-

timate an occlusion map and align a statistical face model

to a single input image within an EM-like probabilistic es-

timation process. Although they can handle arbitrary types

of occlusion the segmentation is either sensitive to illumina-

tion or color changes [47], or they require substantial color

differences between occluders and the face [16]. This is

problematic because real occluders can be mislabeled as

skin in case of similar colors which can lead to distortions

in the model adaptation. The method in [9] aims at recon-

structing a 3D face with unknown expression that is oc-

cluded by a head-mounted device. The method works in

real-time, but requires a pre-scanned 3D model of the tar-

get person and also takes advantage of the device’s inertial

measurement unit for estimating the head pose.

Hybrid Approaches. While explicit face models greatly

deal with missing data and large amounts of noise, they

fail to recover instance-specific details like wrinkles, moles,

dimples, or scars. Several approaches add these details back

in a separate processing step [10, 49]. On the other hand,

generic 3D reconstruction methods are able to recover such

details but work much worse for higher amounts of noise,

outliers or missing data. Recently, in [30] a hybrid approach

was proposed in which a probabilistic face model is used

to denoise a generic height map-based 3D reconstruction.

Especially due to the method’s low computation time and

competitive output quality, we adopt their idea, but incor-

porate the explicit modeling of eyeglasses.

Generally, a separate modeling of occluders is not a new

idea and has already been shown to be beneficial [16, 47].

However, to the best of our knowledge this is the first paper

addressing explicit occlusion modeling for face reconstruc-

tion in the presence of depth information.

1.2. Contributions

The contributions of the system presented in this paper

can be summarized as follows:

• We present a system that fully automatically recon-

structs a human face and a rough 3D geometry of eye-

glasses on a mobile phone using only on-device pro-

cessing. This is achieved by detecting and segmenting

the glasses prior to the reconstruction.

• We propose a general variational segmentation model

that can represent a large variety of glasses and which

does not require a database for learning or model re-

trieval.

• We show that the solution of the segmentation prob-

lem can be efficiently minimized or approximated by

solving a series of 2D shortest path problems.

1.3. Problem Setting and Notation

We assume that a face is scanned by n colored input im-

ages {Ii}ni=1 for which corresponding depth maps {Di}ni=1

are computed with a block-matching approach and corre-

sponding camera calibration parameters {Pi}ni=1 are ob-

tained with a feature point-based structure-from-motion ap-

proach [26, 50]. To obtain a first alignment between the in-

put depth and the statistical shape model we perform land-

mark detections on each frame using the method presented

in [41]. The 3D position of the face is estimated using the

2D landmarks and the camera calibration. We follow the

approach presented in [30] and represent the face with a

2.5D height map. Instead of using the unified projection

model [4, 19, 31] we use a cylindrical mapping which nat-

urally fits the shape of a human face very well. A point
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on the face X = (X,Y, Z)⊤ is projected to the image

point x using a cylindrical projection. The distance to the

point that is stored in the height map H is simply given

by H(x) =
√
X2 + Z2, where we assume that the cylin-

der is at the origin and that the Y -axis is the height axis

of the cylinder. The authors of [30] propose a simple way

of integrating the depth into the height map representation

by simply storing the mean distance of the observed dis-

tance along the ray. However, in the presence of glasses,

certain rays will intersect the skin as well as the frame of

the glasses and the mean will not represent a good estimate

of the distance. To overcome this problem we use a cylin-

drical cost volume where we discretize each ray into a fixed

number of bins. The depth samples are then stored in the

corresponding bin along the viewing ray and the distance of

the bin with the largest number of aggregated depth votes is

stored in the height map. The corresponding texture image

I is computed by averaging the color information from the

images that have been captured from the most frontal view-

point with respect to the projection direction. The advan-

tage of using the projection direction instead of the surface

normal to select the cameras is that it leads to a texture with

less seams as the color information of neighboring pixels

will come mostly from the same images.

2. Segmentation of Eyeglasses

After computing the face height map H and the corre-

sponding texture information I our goal is to detect and

segment potentially existing eyeglasses.

2.1. Eyeglass Detection

The first step of our approach is to detect whether glasses

are present in a given input scan. As previously stated in the

related work, eyeglass detection is a difficult problem on

a single color image, but the additional height map values

provide useful information that simplifies the detection sig-

nificantly. For all points x inside a small rectangular region

ΩROI around the eyes, we sum up all gradient magnitudes

of the height map H , and found a single threshold θ that

separates subjects wearing glasses from those not wearing

glasses in our dataset. That is, we detect the existence of

glasses in the height map if
∫

ΩROI

‖∇H(x)‖22 dx > θ . (1)

A classifier which further includes location and color infor-

mation would be more powerful, but was not necessary in

our case.

2.2. Eyeglass Segmentation

We propose a generic eyeglass model which does not

need any learning, but only relies on a few simple assump-

tions upon existence of glasses in the input data:

1. Appearance / Depth: We assume that the glasses dif-

fer from the face either in color appearance, or in re-

constructed depth values. In most cases both modali-

ties indicate the shape and color of the glasses’ frame.

2. Connectivity: To deal with large amounts of noise and

outliers, we assume that the frame is a connected sur-

face (of arbitrary shape) from the left to the right ear.

3. Location: We assume that the inner eye landmark

points are covered by the glasses.

4. Symmetry: The vast majority of glasses are symmet-

ric with respect to left-right reflection along the center.

In the following we will phrase these assumptions in

mathematical terms and propose to find the segmentation

as a minimizer of a variational energy term.

Variational Segmentation Model. Considering the infor-

mation from the height map H and corresponding texture

image I , we obtain a segmentation of the eyeglasses by

computing an unknown indicator function u : Ω → {0, 1}
which is defined on the same domain Ω ⊂ R

2 as the inputs

H and I . For better readability we introduce shorthand no-

tions for the foreground set Ωu=1 :={x∈Ω | u(x)=1} and

the horizontal domain boundary ∂xΩ := {x ∈ ∂Ω | ∀y :
x=(0, y) ∨ x=(xmax, y)}.

We enforce the foreground set to reach from the left ear

xl to the right ear xr by using connectivity constraints that

can be efficiently imposed as single-source tree shape pri-

ors [48] or as single pair connected path [35] by additionally

enforcing both starting points to be in the foreground set.

These constraints can be efficiently enforced by linear con-

straints defined on a precomputed tree of shortest geodesic

paths. In particular, we require that there exists a connected

path C(xl,xr) from pixels xl to xr to be entirely within the

foreground set. The segmented image can then be computed

as the minimizer of the following optimization problem:

minimize
u

∫

Ω

(

λfu+ φ(∇u)
)

dx (2)

subject to ∃C(xl,xr) ⊂ Ωu=1 ∪ ∂xΩ

u(xl) = u(xr) = u(xp) = u(xq) = 1 ,

where the constraints on xl,xr ensure the connected two-

point path (Assumption 2) and the constraint on the land-

marks points xp and xq enforce their occurrence in the fore-

ground set (Assumption 3) - see Fig. 2 for examplary land-

mark locations. The appearance properties (Assumption 1)

can be expressed as combination of the regional term f ,

e.g. via a log-likelihood ratio of appearance probabilities

f = − log
Pfg

Pbg
, or within the regularizer φ(·).

A typical choice for the regularizer is a weighted total

variation term φ(∇u) = g |∇u|2 in which function g : Ω →
R≥0 controls the local smoothness [7]. However, we use a
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more powerful anisotropic regularization function [40]:

φ(p)=
√

pTΣpp Σp=ΣI
p(nI)Σ

Hu
p (nHu)Σ

Hl
p (nHl).

(3)

The matrix Σp consists of three parts, one for the texture

image and two for the height map, the former one, being

defined as

ΣI
p(n) = gI(x,p,n)

2nTn+ nT
⊥n⊥ , (4)

being a symmetric non-singular square matrix which fa-

vors gradients to align with a given normal direction nI =
∇I/|∇I|2 that we extract from the image and n⊥ is the vec-

tor perpendicular to n. We choose the image-based weight-

ing function as

gI(x,p,n) = exp[−λI |∇I(x)|2] . (5)

In combination with Eq. (3), this cost function has an el-

lipsoidal shape of magnitude one in the tangential direc-

tion and gI(·) in the normal direction. Note, that the costs

function is symmetric with respect to the sign of the im-

age gradient, which is a desirable property since we want to

align with the image gradient direction regardless whether

the color of the glasses is brighter or darker than the skin

color - see, e.g. Fig. 2 in which the frame has both darker

and brighter color than the skin.

In contrast, for the alignment of the labeling function

with the gradients in the height map we want an asymmet-

ric cost function, because we know the dominant direction

of the height maps gradients: Since the glasses are always

in front of the face, we know that the depth gradient for the

upper glass boundary is positive and, respectively, negative

for the lower boundary.

We therefore use more general cost functions, called

Wulff shapes [57], which can be both anisotropic and non-

symmetric. We use a weighted anisotropic ellipsoidal shape

for the positive normal direction and a circular shape for the

negative one:

gH(x,p,n) = 1[p·n≤0] + 1[p·n>0] exp[−λH |∂yH(x)|] .
(6)

This term evaluates only vertical gradients (∂yH), because

they are dominant features along the glass outlines in the

depth maps for which we know the sign of the vertical direc-

tion. The height map in Fig. 2 shows that the vertical com-

ponent gradient is always pointing upwards for the upper

segmentation boundary and downwards for the lower one.

Without this signed directional cost term, the segmentation

boundary would often follow the depth gradients along the

frame interior (which are directed in the opposite direction).

Therefore, we define the matrices for height map cost func-

tions ΣHu
p (nHu), Σ

Hl
p (nHl) exactly as in Eq. (4), but with

weight function (6) using upward and downward pointing

•
xp

•
xq

•
xl

•
xr

Figure 2: First row: example of multiple input images and

corresponding depth maps computed on a mobile phone.

Second row (left to right): height map distances, height

map texture, inner eye landmark points. Third row (left

to right): upper and lower shortest paths computed without

boundary path constraint, boundary path, upper and lower

shortest paths with boundary path constraint. Here, all re-

sults are computed without the symmetry constraint.

Wulff shapes with fixed normals for the upper and lower

segmentation boundary, respectively:

nHu = (0, 1)T nHl = (0,−1)T . (7)

We found experimentally, that such a regularizer provides

strong features for the segmentation and makes a regional

color-based term like in [16] unnecessary. The color of

the human face among different people and under different

lighting conditions spans a large region in the color space

and a color-based segmentation is therefore either very sen-

sitive to such changes or not very discriminative. We hence

assume equal labeling likelihoods Pfg = Pbg in every pixel,

for which the regional term then vanishes (f = 0). Unfor-

tunately, this segmentation model has two disadvantages:

1. Speed: Although the connectivity constraints do not

have a large influence on the numerical optimization

of (2), state-of-the-art algorithms like [38] still require

several hundred iterations to converge.

2. Solvability: The efficient computation with connec-

tivity constraints [48] can only be applied to isotropic

regularizers, because the optimal shortest path tree can

only be precomputed for costs that do not depend on

the labeling.

We circumvent these drawbacks by leveraging the special

structure of our segmentation problem.

Efficient Optimization via Shortest Paths. Since the con-

nectivity constraints always connect the left domain bound-
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ary with the right one, the foreground set boundary always

consists of an upper connected path Cu and a lower con-

nected path Cl which separate the upper and lower back-

ground region from the foreground, respectively. Without

data fidelity term (f = 0) only the regularizer defines the

pixel-wise cost c(x) = φ(∇u(x)) and then both, the upper

and lower boundary of the foreground set is defined by the

shortest path through this cost volume. For an isotropic reg-

ularizer φu(·) the costs for upper and lower foreground set

boundary are the same and the foreground region collapses

to a single connected path through the image - exactly the

geodesic path which is precomputed in [48] - which is not

useful for our setting. With the directional-dependent cost

function in Eq. (6) we obtain two different cost functions

which encode that the upper boundary contains positive

depth gradients and the lower boundary contains negative

ones. We simply compute the two boundary paths with Di-

jkstra’s algorithm on each of the two different cost volumes.

The upper and lower boundary paths are shown in Fig. 2 in

red and green respectively.

Boundary Path Dependency. Unfortunately, the compu-

tation of upper and lower boundary paths is in general not

independent. If they do not cross each other, we have found

the optimal solution and we are done. This happened in

the majority of our experiments. If they cross each other, a

simple strategy to prevent the crossing is an iterative algo-

rithm that takes out one edge at a detected crossing and then

recomputes both shortest paths. This can then be iterated

until no crossings are detected anymore or the graph is dis-

connected and there is no solution. There are several algo-

rithms available which make shortest path re-computations

after changing a single edge in the graph more efficient, e.g.

DynamicSWSF-FP [39], or the so-called Lifelong Planning

A* or Incremental A* [24].

However, since we are seeking high efficiency and we

again leverage the special graph structure and propose a

simple and effective heuristic. We assume that there exists

a boundary path between upper and lower which bounds

the domain which each path can traverse, that is, the upper

path lies on or above the boundary path and the lower path

lies on or below it, respectively. The problem is that we

do not know a priori where this boundary is located. If we

detected a path crossing we assume that the boundary path

traverses the crossing points. We calculate the boundary

path on the point-wise minimum of upper and lower path

cost only on the domain between the previously computed

upper and lower paths.

After we have obtained the boundary path, we recompute

upper and lower paths on the respective domains restricted

by the boundary path. The boundary path is shown in ma-

genta in Fig. 2. This way, we get a guaranteed cross-free

solution with either two or five iterations of Dijkstra’s algo-

rithm, for which two of the latter optional three iterations

Figure 3: Segmentation results for two datasets with and

without symmetry constraints. From left to right: texture

image with detected symmetry axis, result without symme-

try constraint, result with symmetry constraint.

are computed on only half the domain. Unfortunately, in

this case we cannot guarantee to find the global solution for

problem (2), but we found experimentally that the proposed

heuristic does exactly what we want and more importantly

this case occurred only rarely in our experiments.

Symmetry Constraints. Due to the symmetric nature of

glasses it is possible to improve the segmentation by enforc-

ing symmetry constraints. The idea is to flip and average

the per-pixel costs along the symmetry axis of the glasses.

Unfortunately, flipping the per-pixel costs along the vertical

image axis is not accurate enough because of potential er-

rors in the face alignment and due to the fact that the glasses

are not always worn perfectly horizontally. Therefore, we

optimize for an in-plane rotation R and translation t via:

minimize
R,t

∑

x

w(x)
[

H̄(Rx+ t)−H(x)
]

, (8)

where H̄ denotes the height map flipped around the verti-

cal image axis and w(x) = (1 − exp[−λI |∇I(x)|2])(1 −
exp[−λH |∇H(x)|2]). This problem can be efficiently

and robustly optimized using gradient descent based im-

age alignment algorithms [3]. The final per-pixel cost

for the boundary path computation is given by c′(x) =
0.5 [c(x) + c̄(Rx+ t)]. In Fig. 3 we show two example

segmentations where the symmetry constraint is beneficial.

3. 3D Face Reconstruction

The 3D face reconstruction approach presented in [30]

neglects eyeglasses, but forms the basis of our work and is

therefore briefly repeated within this section. The method

consists of 3 steps, namely an alignment optimization, a

model fitting step and a height map optimization that reg-

ularizes the difference of the height map to the model fit.

Alignment Optimization. We found that the alignment op-

timization that uses a truncated cost function is very robust

and is able to align faces well even in presence of glasses.

The idea is to look for a similarity transform that mini-

mizes the truncated sum of absolute differences between the

height map that needs to be aligned and a reference height
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Figure 4: Segmentation results for a variety eyeglass models and subjects. In the majority of cases, our segmentation model

delineates the shape of the glasses very well. The segmentation is depicted by the upper (red) and lower (green) boundary

path. Only in very challenging cases like transparent or frameless glasses the segmentation fails (bottom right). However, in

this case the consecutive 3D reconstruction will be barely affected because of the missing depth values along the glass frame.

map of the mean face of the statistical model. More details

can be found in [30].

Model Fitting. Let f ∈ R
WH be a vector built by stacking

all the pixels of a height map H on top of each other. W
and H denote the width and height of the height map, re-

spectively. By applying a covariance based PCA to a mean

normalized data matrix D = [f1, . . . , fp] we obtain a statis-

tical face model F = (µ,σ,U), where µ denotes the mean,

σ denotes the standard deviation and U is an orthonormal

basis of principal components [5, 37]. Fitting such a model

to a vectorized height map f amounts to finding coefficients

β such that f = µ+U diag(σ)β. In this work we estimate

the coefficients by minimizing

minimize
β

‖U diag(σ)β − (f − µ)‖22 + ‖αβ‖22 , (9)

where α is a parameter that pulls the fit towards the mean.

This is a commonly used strategy that prevents overfit-

ting [5]. While this fitting method differs slightly from [30]

the big difference is that we fit the model only on regions

that are not part of the eyeglasses. If the eyeglasses are ig-

nored the model fitting is prone to cause degenerations in

the facial geometry.

Height Map Regularization. Low dimensional parametric

models cannot represent instance specific variations such as

moles, dimples, scars, or wrinkles. We would like to bring

back details that are present in the depth maps but have not

been captured by the model. Furthermore, since part of the

face is covered by glasses, we would like to use the model

to get a plausible reconstruction of the occluded area. As

in [30] we regularize a residual R obtained by subtracting

the fitted model HF from the height map H . For all the

pixels belonging to the glasses we set the residual to zero.

This is equivalent to a fill-in guided completely by the fitted

model. The regularized residual u is obtained by optimizing

minimize
u

∑

i,j

‖∇ui,j‖ǫ + λ ‖(ui,j −Ri,j)‖22 , (10)

where λ ∈ R≥0 is a weight that trades smoothness against

data fidelity and ‖ · ‖ǫ denotes the Huber norm [11]. The

final reconstruction H is obtained by adding the regularized

residual to the fitted model H = HF +R.

Eyeglass reconstruction. While we use Eq. (10) for op-

timizing the face geometry and ignore the depth measure-

ments within the segmented glasses, we use the same en-

ergy (10) for computing a geometry of the glass frame. We

optimize the height map only within the segmented glasses

and only use depth values close to the eyeglass segmenta-

tion boundary which mostly contain depth measures from

the frame and set all other data fidelity values Ri,j to zero,

i.e. we effectively solve a depth inpainting problem [12].

For better consistency, we leverage the previously detected

symmetry by averaging the geometry of the glasses.

4. Experimental Evaluation

We conducted a series of experiments both on synthetic

and real data in order to evaluate our segmentation method,

and the subsequent reconstruction with respect to 1) varia-

tions of the human face, 2) variation of the eyeglass shape,

and 3) variations of the noise level on the depth maps. Fur-

thermore, there are variations of the lightning in the dataset,

because the scans have been acquired in various locations.

All the test data has been either captured with a Samsung

Galaxy S7 or with a Motorola Nexus 6 phone.

Segmentation Evaluation. In Fig. 4 we evaluate the seg-

mentation of the height maps on a variety of eyeglass shapes

and human faces. The red and green paths depict the upper
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Figure 5: Examplary hand-labeled ground-truth segmenta-

tions for some of the datasets of Fig. 4.

and lower segmentation boundary of the glass segmenta-

tion. Our segmentation approach robustly segments the ma-

jority of eyeglass shapes. The major difficulty are frameless

glasses, as depicted at the bottom of the last column, be-

cause there is very little evidence in both the height map

values as well as the color image. We also performed a

quantitative evaluation of the segmentation accuracy for the

datasets of Fig. 4 using hand labeled ground-truth segmen-

tations (see also Fig. 5). The average intersection-over-

union score is 0.84 (0.90 when evaluated on the central re-

gion {x : 30 ≤ x ≤ 120} for a height map width of 150).

Without symmetry constraint the scores are 0.81 (0.88).

Robustness and Accuracy Evaluation on Synthetic Data.

Due to the difficulty of acquiring ground truth face mod-

els we have performed a synthetic evaluation in which we

have augmented 3D models of faces with glasses. For each

model we have rendered 15 depth maps and texture images

with and without glasses from varying viewpoints that cover

the face area well. The depth maps have been corrupted by

removing 50% of the data and by adding increasing levels

of zero mean Gaussian noise. To evaluate the accuracy of

the reconstruction we use the distance measure proposed

in [13]. As we can see in Fig. 6 and Tab. 1 our approach

copes well with noise and yields plausible reconstructions

that are visually very similar to the reconstruction results

on the model without glasses. The error magnitude in the

occluded areas is bigger but that is fine as long as the recon-

struction is visually pleasing.

σ = 0.0 2.0 4.0 6.0 8.0

no glasses (avg) 0.1 0.2 0.3 0.5 0.8

no glasses (max) 3.0 3.4 3.5 3.6 4.1

glasses (avg) 0.3 0.4 0.5 0.7 0.8

glasses (max) 4.0 4.3 4.0 3.7 4.1

Table 1: Average and maximal error in [mm] for model re-

construction with and without glasses averaged over 3 dif-

ferent models.

Robustness and Accuracy Evaluation on Real Data. In

Fig. 7 we show a variety of 3D results, again for different

faces as well as different glass shapes. Our algorithm yields

very plausible results also within the area that has been oc-

cluded by the glasses. Fig. 8 compares the results of our al-

0 1 2 3 4 5

Figure 6: Synthetic evaluation of reconstruction accuracy.

First row: example of 3D head model with and without

glasses and corresponding ground truth depth. The recon-

struction results are computed using 15 depth maps with

50% missing data and increasing Gaussian noise with zero

mean and σ = 0, 2, 4, 6, 8 [mm] (from left to right). Second

and third row: reconstruction results for a sample model

without glasses. Fourth and fifth row: results for the same

model with glasses. Color map units are in millimeters.

gorithm with eyeglass segmentation against the result with-

out a preceding segmentation. Without the segmentation the

model fitting tries to adapt to depth values of both the face

and the eyeglasses, which leads to strongly distorted models

(Fig. 8, bottom right).

Runtimes. Timings on a Samsung Galaxy S7 for a height

map resolution of 150 × 120 pixels and depth maps at a

resolution of 320× 240 pixels are reported in Tab. 2.

5. Conclusion

We presented a novel method for the 3D reconstruction

of faces and eyeglasses which is suitable to run on mo-

bile devices. Our method uses a cylindrical height map for

the aggregation of the input depth maps with correspond-

6605



Subject [30] Ours Ours w. Glasses

Figure 7: Results for different subjects wearing glasses of

various shapes. From left to right: sample input image,

result obtained using the method presented in [30], result

obtained using the proposed approach, reconstruction of

glasses obtained using our approach.

Input Ours [30]

w
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es

w
it

h
g
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ss

es

Figure 8: Model fitting results for a subject with and without

glasses in comparison to [30] which does not remove the

glasses before the model fitting. Ignoring the glasses can

cause significant distortions in the model (bottom right).

Depth computation & integration (per depth map) 105 ms

Alignment (once) 2000 ms

Texture computation (using 30 images, once) 1800 ms

Segmentation (once, ≈ 40ms per shortest path) 100 ms

Model fitting (once) 200 ms

Regularization (once, 700 iterations) 2200 ms

Total (30 depth maps) 9450 ms

Table 2: Average runtimes (unoptimized code) on a Sam-

sung Galaxy S7. Apart from the segmentation (bold) all

steps and runtimes are similar to [30], leading to only 1%
runtime overhead.

ing color information. We introduced a variational model

for the segmentation of eyeglasses inside the height map

and showed that the segmentation problem can be more ef-

ficiently solved or approximated by computing a series of

either two or five Dijkstra shortest path computations. Our

method then subsequently reconstructs the 3D face by fit-

ting a statistical face model to the non-glass geometry and

then regularizes the difference between the shape model

and the aggregated height map, which allows to reconstruct

instance-specific details. Similarly, we are able to recon-

struct the geometry of the glasses by regularizing the aggre-

gated height values inside the segmented glass region. Mul-

tiple experiments on synthetic and real data demonstrate

that our method is robust to changes in noise, lighting con-

ditions, various face and glass shapes. Although our model

does not need a database of eyeglass to reliably segment a

large variety of glasses, in future work we want to explore

the performance of learned models for glasses.
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Müller Optik Zürich AG (http://www.mueller-optik.ch)

for providing various eyeglass models for the experiments.

6606

http://www.mueller-optik.ch


References

[1] O. Aldrian and W. A. P. Smith. Inverse rendering of faces

with a 3d morphable model. TPAMI, 35(5):1080–1093,

2013. 2

[2] B. Amberg, R. Knothe, and T. Vetter. Expression invariant

3d face recognition with a morphable model. In IEEE Inter-

national Conference on Automatic Face & Gesture Recogni-

tion, 2008. 2

[3] S. Baker and I. Matthews. Lucas-kanade 20 years on: A uni-

fying framework. International journal of computer vision,

56(3):221–255, 2004. 5

[4] J. P. Barreto and H. Araujo. Issues on the geometry of central

catadioptric image formation. In CVPR, volume 2, pages II–

422. IEEE, 2001. 2

[5] V. Blanz and T. Vetter. A morphable model for the synthesis

of 3d faces. In SIGGRAPH, 1999. 2, 6

[6] D. Borza, A. S. Darabant, and R. Danescu. Eyeglasses

lens contour extraction from facial images using an efficient

shape description. Sensors, 13(10):13638–13658, 2013. 1, 2
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