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Abstract

We propose a direct monocular SLAM algorithm based

on the Normalised Information Distance (NID) metric. In

contrast to current state-of-the-art direct methods based on

photometric error minimisation, our information-theoretic

NID metric provides robustness to appearance variation

due to lighting, weather and structural changes in the scene.

We demonstrate successful localisation and mapping across

changes in lighting with a synthetic indoor scene, and

across changes in weather (direct sun, rain, snow) using

real-world data collected from a vehicle-mounted camera.

Our approach runs in real-time on a consumer GPU using

OpenGL, and provides comparable localisation accuracy to

state-of-the-art photometric methods but significantly out-

performs both direct and feature-based methods in robust-

ness to appearance changes.

1. Introduction

Real-time monocular simultaneous localisation and

mapping (SLAM) is a key technology enabling augmented

and virtual reality applications [3]; 3D survey and recon-

struction [7]; and robotics, in particular micro aerial vehi-

cle (MAV) navigation [9]. Monocular SLAM approaches

typically track a sparse set of visual features matched us-

ing descriptors that are robust to limited lighting, scale and

viewpoint changes.

By using sparse key-point matching and efficient bun-

dle adjustment, feature-based methods offer computational

savings at the cost of reduced accuracy and robustness,

since most of the information contained in each image is

discarded [6]. Recent methods that directly minimise the

photometric error between image and map are designed to

address these limitations [32], providing increased accu-

racy, dense reconstructions and some robustness to view-

point change and blur [7, 24]. However, the key limitation

for these methods is the implicit assumption of static scene

illumination required for the photometric error metric; this

only holds in controlled indoor environments or over short

Figure 1. Robust monocular SLAM in changing conditions with

NID-SLAM. After traversing an outdoor environment (red) and

building key-frame depth maps, we are able to re-localise and re-

fine the map under different lighting (orange) and weather (green)

conditions using the robust Normalised Information Distance met-

ric. Depth maps projected into images (center) show the alignment

and camera frustrums (bottom) show the tracked sim(3) poses.

periods of time outdoors. This severely limits applications

of photometric visual SLAM methods, since maps can only

be used in the lighting conditions in which they were gen-

erated.

In this paper we address the challenge of long-term vi-

sual SLAM in the presence of outdoor lighting, weather and

structural scene changes. We present a monocular SLAM

approach based on the Normalised Information Distance

(NID) metric, dubbed NID-SLAM, and demonstrate ro-
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bust localisation and mapping in the presence of appear-

ance change over time as illustrated in Fig. 1. Unlike

photometric error, the NID metric is not a function of the

intensities of an image but instead a function of their en-

tropies; hence, images collected under significantly differ-

ent lighting, weather and seasonal conditions can be lo-

calised relative to a common map and used to update depth

maps despite appearance changes. Using both synthetic and

real-world data we demonstrate that NID-SLAM provides

robustness exceeding that of state-of-the-art feature-based

methods, while retaining accuracy comparable with state-

of-the-art direct photometric methods. Finally, we present

details of our real-time portable OpenGL implementation

and address some limitations of the method in very chal-

lenging conditions.

1.1. Related Work

Most monocular SLAM approaches are so-called indi-

rect methods; they rely on a feature-based front-end to de-

termine sparse keypoints and descriptors (e.g. [17, 28])

to estimate camera pose using a filter-based [5, 13] or

optimisation-based [14, 31, 22] back-end. However, in-

direct methods rely entirely on the feature detector to de-

termine what parts of the image are useful for localisation

(often ignoring edges and other geometry that provide use-

ful cues [15]), as well as relying on the feature descrip-

tor to provide robustness to changes in appearance due to

scale, viewpoint and illumination [21]. In particular, fea-

ture descriptor matching is not robust to outdoor appear-

ance changes caused by strong lighting variation, weather

conditions and seasonal changes over longer time periods

[12, 34].

Recently a number of direct methods have been pro-

posed, which operate on pixel intensities without explicit

feature extraction by minimising photometric error between

a camera frame and a dense [32, 24] or semi-dense [7, 10]

depth map. These methods claim to be more robust to view-

point changes and motion blur and can offer higher tracking

accuracy compared to indirect methods since the entire im-

age is used. More recent results in [6] illustrate the advan-

tages of explicit photometric calibration and exposure/gain

compensation for accurate visual odometry (VO), however

these methods still rely on the underlying static scene light-

ing assumptions inherent to photometric approaches. The

recent direct VO method in [1] extends photometric error

across a set of ‘bit-planes’ (similar to dense descriptor ap-

proaches [16]); this increases robustness to local lighting

variations but does not address global changes in scene ap-

pearance over longer time periods.

An effective global metric for image alignment under

changing conditions is mutual information (MI), often used

to align images from multiple modalities [19, 36]. MI-

based metrics have been used for camera pose tracking
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Figure 2. The NID-SLAM pipeline. The key components for pho-

tometric tracking and mapping (green) are augmented with robust

NID-based methods (red). Loop closures are detected using FAB-

MAP [4] and robust NID-based tracking is used to generate con-

straints to build a consistent global map. We perform tracking and

mapping on the GPU at 10Hz using OpenGL, and loop closure

detection and optimisation runs in parallel on the CPU at 1Hz.

against prior maps [2, 27], and have demonstrated robust-

ness to changing outdoor illumination conditions, structural

change, blurred images, and occlusions over long time pe-

riods [37, 30, 26]. We believe our approach is the first to in-

corporate a robust whole-image MI metric into a monocular

SLAM framework, providing both robust camera tracking

and depth map updates in the presence of lighting, weather

and structural scene changes over time.

1.2. Contributions

In this paper we present three novel contributions that

form the key components of NID-SLAM as follows:

Robust direct tracking using NID: We present a real-time

approach for minimising the NID between a candidate im-

age and a key-frame depth map to recover the sim(3) cam-

era pose. In contrast to previous methods we explicitly in-

corporate depth uncertainty into the NID score.

Multi-resolution tracking using histogram pyramids:

We present a novel histogram-pyramid approach for robust

coarse-to-fine tracking using NID which increases robust-

ness and the basin of convergence while reducing computa-

tion time at smaller scales.

Direct depth map refinement using NID: We present a

per-pixel key-frame depth map refinement approach using

NID, which allows for map maintenance and depth updates

over successive traversals despite appearance changes over

time.

2. Direct Monocular SLAM using NID

Fig. 2 provides an overview of the NID-SLAM system,

highlighting the novel components in comparison to exist-
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Figure 3. Tracking the current image Ic against a reference im-

age Ir with associated inverse depth map Dr and variance Vr . A

point in the reference image pi is projected into the current image

qi using the warping function ω (·) in Eq. 1, which depends on

the relative pose ξ ∈ sim(3). For photometric tracking only the

intensities Ir (pi) and Ic (qi) are needed; for NID tracking the

neighbourhood N (qi) around point qi is also used.

ing photometric monocular SLAM approaches. In this sec-

tion we detail the components of NID-SLAM, in particular

NID-based tracking and depth update.

2.1. Robust Direct NID Tracking

For the following sections we adopt the key-frame and

map representations of [7]: a key-frame consists of an im-

age I : Ω → R
+, inverse depth map D : Ω → R

+ and in-

verse depth variance V : Ω → R
+, where Ω ∈ R

2 are nor-

malised pixel coordinates. We select a subdomain of each

image ΩD ∈ Ω, where ΩD are all locations with sufficient

gradient to provide meaningful depth estimates. We adopt

the notation for a 3D projective warp function ω from [7],

which transforms an image point pi ∈ ΩD and associated

reference inverse depth Dr (pi) ∈ R
+ by the camera pose

ξ ∈ sim(3) to yield the new camera frame point qi ∈ R
2,

as illustrated in Fig. 3:

qi = ω (pi, Dr (pi) , ξ) (1)

Photometric alignment of a current image Ic relative to

a reference image Ir is typically performed by solving the

following minimisation problem for the relative pose ξ:

argmin
ξ

∑

pi∈ΩD

wi (ξ)
∥

∥

∥
(Ir (pi)− Ic (qi))

2
∥

∥

∥

δ
(2)

where the image sampling functions I (·) : R2 → R
+ return

the scalar intensity value at a subpixel location. The weight-

ing function wi (ξ) ∈ R
+ scales the residual based on depth

uncertainty, and the robust kernel function ‖·‖δ reduces the

effect of outliers (e.g. Huber norm). However, the photo-

metric error metric is inherently limited to environments

where the appearance remains constant over time, which re-

stricts applications to indoor environments with controlled

lighting or short time periods outdoors. The more robust

NID-based alignment metric is defined as follows:

argmin
ξ

NID
pi∈ΩD

(Ir (pi) , Ic (qi)) (3)

Unlike mutual information, NID (·) : R|ΩD| × R
|ΩD| →

R
+ is a true metric bounded by [0, 1] that satisfies the trian-

gle inequality and does not depend on the total information

content in a distribution [35]. The NID metric is defined as

follows:

NID (Ir, Ic) =
2H (Ir, Ic)− H (Ir)− H (Ic)

H (Ir, Ic)
(4)

where H (Ir, Ic) ∈ R
+ is the joint entropy of the corre-

sponding samples in images Ir and Ic, and H (Ir) ∈ R
+

and H (Ic) ∈ R
+ are the marginal entropies, defined as fol-

lows:

H (Ic) = −

n
∑

a=1

pc (a) log (pc (a)) (5)

H (Ir, Ic) = −

n
∑

a=1

n
∑

b=1

pr,c (a, b) log (pr,c (a, b)) (6)

where H (Ir) is defined similarly to Eq. 5. The marginal

pc ∈ R
n and joint pr,c ∈ R

n×n distributions are repre-

sented by n-bin histograms where a and b are individual bin

indices. Since both pr and pc can be obtained from pr,c by

marginalisation, the primary computation in NID-SLAM is

computing the joint distribution pr,c and its derivatives from

the set of points p ∈ ΩD projected from the keyframe into

the current image Ic.

We adopt a sampling approach to compute the joint dis-

tribution pr,c as illustrated in Fig. 4. In contrast to previous

NID-based localisation approaches we explicitly incorpo-

rate depth map uncertainty into the pose estimate, in the

form of the inverse depth variance Vr (pi). The contribu-

tion from each sample pi ∈ ΩD is added as follows:

pr,c (a, b)← pr,c (a, b) +
β
(

qi, N
(j) (qi)

)

kVr (pi)
(7)

Here β
(

qi, N
(j) (qi)

)

∈ R
+ represents a 2D cubic B-

spline function that weights the contribution of pixel j in

the 4×4 neighbourhood N (qi) based on proximity to sub-

pixel location qi. The weights are normalised such that
∑j

β
(

qi, N
(j) (qi)

)

= 1, ∀qi. Note that by sampling

the j neighbouring pixels N (j) (qi) of qi, we never sample

Ir or Ic at sub-pixel locations; in contrast to photometric

methods, no interpolation between pixel intensities is re-

quired. The cubic B-spline results in a histogram function
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Figure 4. Contribution to the joint distribution pr,c from a single

point pi. Using the relative pose ξ the point is projected into sub-

pixel location qi in the current image Ic, and the 4× 4 neighbour-

hood N (qi) around location qi is retrieved. For each pixel j in

the neighbourhood, the B-spline function β (·) ∈ R
+ weights the

pairwise contribution to the joint based on proximity to qi (shown

as blue lines). The function B (·) ∈ N computes the bin index for

each pairwise contribution based on the pixel intensity (here a 4-

bin histogram is shown). Note that for the reference image Ir the

histogram bin a = B (Ir (pi)) is constant for all neighbourhood

pixels j; hence at most one column of the joint pr,c will be updated

for each point pi.

that is C2 continuous, allowing for its use in a gradient-

based optimisation framework. Histogram bin indices (a, b)
are computed as follows:

a = B (Ir (pi)) , b = B
(

Ic

(

N (j) (qi)
))

(8)

where B (·) : R+ → N returns the corresponding histogram

bin for the intensity value provided by I (·). As the refer-

ence image bin index a = B (Ir (pi)) is constant for all

neighbourhood pixels j, one sample will update at most n

bins in the joint pr,c, illustrated in Fig. 4. Finally, the con-

stant k normalises the contribution of an individual sample

pi as follows:

k =
1

|ΩD|

∑

pi∈ΩD

1

Vr (pi)
(9)

After computing pr,c (and therefore pr and pc), these can

be substituted into Eq. 5 and 6 to compute the marginal and

joint entropies, which are then substituted into 4 to produce

the NID value. By differentiating Eq. 3 with respect to the

relative pose parameters ξ, we build an optimisation prob-

lem that seeks to minimise the NID between an image and

key-frame by iteratively updating a relative pose estimate

ξk:

ξk+1 = ξk − αkΣk

∂NID (Ir (pi) , Ic (N (qi)))

∂ξ

∣

∣

∣

∣

pi∈ΩD

(10)

where αk ∈ R
+ is a step distance from a robust line search

and Σk ∈ R
6×6 is an iteratively updated inverse Hessian

or covariance approximation computed using the BFGS

method [29], available at no extra cost after optimisation.

(a)

(b)

Figure 5. NID variation for 3 pyramid levels with (left) transla-

tional and (right) rotational offsets from the ground truth pose,

averaged across 10 images from the New Tsukuba dataset. (a)

Naı̈vely downscaling the input image fails to provide any bene-

fit, but the multi-level histogram representation H(l) (b) yields a

smoother cost suface and wider convergence basin at higher pyra-

mid levels, increasing robustness.

We have found NID-based tracking outperforms photomet-

ric tracking in both accuracy and robustness for all but the

very first key-frame initialised with random depth values.

2.2. Multiresolution NID Tracking

To increase robustness and the basin of convergence,

many direct photometric methods use a coarse-to-fine im-

age pyramid approach [24, 7]. We experimented with a

naı̈ve down-scaling approach but found that it did not im-

prove robustness, as illustrated in Fig. 5. Instead, we pro-

pose a multi-resolution histogram representation where his-

tograms are averaged instead of pixel intensities.

We build a pyramid of n-channel histogram images, de-

noted H(l) for pyramid level l. Each channel a of the base

levelH(0) is computed from the input image I as follows:

H(0) (pi, a) =

{

1, a = B (I (pi))
0, otherwise

(11)

Successive levels are produced by down-sampling as fol-

lows:

H(l+1) (pi, a) =
1

4

4
∑

j=1

H(l)
(

N (j) (2 · pi) , a
)

(12)

where N (pi) returns pixels within a 2 × 2 neighbourhood

of pi. The histogram down-sampling process is illustrated

in Fig. 6. The joint distribution update of Eq. 7 is replaced

by the multi-resolution histogram form, illustrated in Fig.

7, as follows:
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I (pi)

n

H(0) (pi, a) H(1) (pi, a) H(2) (pi, a)

Figure 6. Multi-resolution histogram representation. The image I is first converted to a multi-channel binary image H(0), where the

index a selects among the n histogram bins. Each channel of H(0) is successively down-sampled using 2 × 2 block averaging, with H(l)

representing the histogram down-sampled l times. By down-sampling the histogram representation instead of building histograms from

the down-sampled image Ic, more information is retained at lower image resolutions.

a

b

pi qi

ξ

β
(

qi, N
(j) (qi)

)

H(l)
r (pi, a) p(l)r,cH(l)

c (N (qi) , b)

γ
(l) (a, b) ≥ 0

n

Figure 7. Contribution to the level-l joint distribution p
(l)
r,c from a

single point pi using a multi-resolution n-bin histogram represen-

tation. Each sample from the reference histogram H
(l)
r (pi, a) and

neighbourhood pixel j in current histogram H
(l)
c

(

N (j) (qi) , b
)

are indexed by (a, b) to determine the pairwise contribution. The

pairwise histogram weighting function γ(l) defined in Eq. 14 can

be non-zero for any bin index (a, b), and therefore unlike in Fig.

4, all elements in the joint may be updated for each point pi.

p(l)r,c (a, b)← p(l)r,c (a, b) +
γ(l) (a, b)β

(

qi, N
(j) (qi)

)

kV
(l)
r (pi)

(13)

where the pairwise histogram weighting function

γ(l) (a, b) : N× N→ R
+ is defined as follows:

γ(l) (a, b) = H(l)
r (pi, a)H

(l)
c

(

N (j) (qi) , b
)

(14)

Importantly, the weighting function γ(l) can be non-zero

for any combination of bin indices (a, b), and therefore Eq.

13 may update up to n2 histogram bins in the joint dis-

tribution p
(l)
r,c in contrast to n bins for Eq. 7. This in-

creases computation by a constant factor for each level, but

higher pyramid levels quadratically reduce the number of

samples which results in an overall computational saving.

We also observed an increase in robustness to poor initial-

isation which justifies the additional computational load as

illustrated in Fig. 5. Coarse-to-fine tracking is performed by

successively solving Eq. 10 for successive levels l of p
(l)
r,c,

using the final pose from each level to initialise tracking for

the next.

2.3. NID Depth Map Update

After solving for the estimated camera pose ξ̂, direct

methods typically refine key-frame depth estimates using

small-baseline stereo measurements from the current image

Ic [7]. For photometric error this can be performed inde-

pendently for each pixel pi ∈ ΩD using efficient quadratic

optimisation. However, when revisiting key-frames after

long periods of time, lighting and appearance changes suf-

ficiently to make local photometric depth updates impos-

sible. We propose a global approach to key-frame depth

updates using the NID metric to robustly maintain and im-

prove depth estimates across appearance change.

For a camera pose ξ we compute the inverse depth gra-

dient ∇Dr
(ξ) ∈ R

|ΩD| as follows:

∇Dr
(ξ) =

∂NID (Ir (pi) , Ic (N (qi)))

∂Dr (pi)

∣

∣

∣

∣

ξ,pi∈ΩD

(15)

The new estimated reference inverse depth map D̂r is

then iteratively updated using the BFGS method, similar to

Eq. 10:

D̂r (p) k+1 = D̂r (p) k − αDk
ΣDk
∇Dr

(ξ) (16)

where αDk
∈ R

+ is a step distance and ΣDk
∈ R

|ΩD| ×
R

|ΩD| is the estimated depth covariance after k iterations,

which is typically sparse. After optimisation, the inverse

depths Dr and inverse depth variances Vr are updated as

follows:

Dr (p) =
D̂r (p)k ◦ Vr (p) +Dr (p) ◦ diag (ΣDk

)

Vr (p) + diag (ΣDk
)

(17)

Vr (p) =
(

Vr (p)
−1

+ diag (ΣDk
)
−1

)−1

+ diag
(

σ2
pI
)

(18)
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Parameter Value

Num Histogram Bins (n) 16

Num Histogram Pyramid Levels (l) 3

Min Gradient for Depth 5

Min Frames per Key-frame 5

Min Key-frame Overlap 40%

BFGS Max Iterations Per Level 50

BFGS Max Line Search Iterations 20

Table 1. NID-SLAM Parameters

where ◦ is the Hadamard (element-wise) product and σ2
p is

a process noise term similar to the update in [7] to ensure

inverse depth variances do not become overconfident.

In practice we find that the NID depth update is sensi-

tive to the depth initialisation and number of samples; it

will fail to converge when initialising a key-frame with ran-

dom depth values as in [7]. Hence we suggest performing

NID depth map updates only when revisiting a previously-

initialised key-frame after appearance change; photometric

depth updates are currently more robust to poor depth esti-

mates and therefore more effective when initialising new

key-frames. Note, however, that we still use NID-based

tracking, even on the first visit to a keyframe.

2.4. Pose Graph Optimisation

To build a consistent global map from interconnected

key-frames we adopt the scale-aware pose graph optimi-

sation approach in [7]. We use FAB-MAP [4] to provide

loop closure candidates from the current image to previ-

ous key-frames, then perform a multi-resolution NID rel-

ative pose optimisation to determine the loop closure con-

straint. These constraints are optimised with the the key-

frame poses to form a global map. Our direct NID tracking

is particularly effective at building loop closure constraints

in outdoor environments over long time periods, since ap-

pearance change is inevitable in the presence of sunlight,

shadows and occluding objects.

3. Results

We compare the performance of NID-SLAM against two

other state-of-the-art monocular SLAM approaches, ORB-

SLAM2 [23] and LSD-SLAM [7]. We perform an eval-

uation using two different datasets, the synthetic indoor

New Tsukuba Dataset [20] and sections of the outdoor Ox-

ford RobotCar Dataset [18], illustrated in Fig. 8. Un-

like the well-known KITTI dataset [11], the Oxford Robot-

Car Dataset provides many traversals of the same route at

different times. Each dataset includes multiple traversals

of the same route under different illumination or weather

conditions; the New Tsukuba dataset additionally provides

ground-truth trajectory and depth map data for accuracy

evaluation. We selected six 500m traversals of the same lo-

cation in the Oxford RobotCar Dataset to represent outdoor

operation in changing conditions.

We performed a total of 16 experiments for the indoor

datasets and 36 for the outdoor datasets. Each experiment

involved two sequential traversals from two different con-

ditions, where the goal is to successfully localise and track

the second traversal against the SLAM map built during the

first. To evaluate tracking performance we manually set the

first active keyframe for the start of the second traversal to

the first keyframe in the map from the first traversal (so that

we do not rely on loop closure for the initial tracking). We

report the success rate for the second traversal as the per-

centage of frames successfully tracked against keyframes

generated from the first traversal.

Our implementation of NID-SLAM uses OpenGL Shad-

ing Language1 (GLSL) for portability between different

platforms; we achieve 10Hz tracking and mapping up-

dates using a single desktop AMD R9 295x2 GPU. For

ORB-SLAM2 and LSD-SLAM we use the open source

implementations available2,3, modified to support active

keyframe initialisation for multi-session mapping. We also

implemented the exposure compensation for LSD-SLAM in

[8] to improve performance in outdoor environments. Table

1 lists the parameters used in this evaluation.

3.1. Robust Indoor Tracking

For the indoor New Tsukuba dataset, we use the ground-

truth poses to scale the sim(3) key-frame transforms to

SE(3) transforms, and report trajectory errors in metric

units. Table 2 presents the RMS translational and rotational

errors for each method along with the localisation success

rate, where a localisation failure is either self-reported by

each algorithm (e.g. failed tracking convergence) or a true

absolute error of more than 0.5m.

NID-SLAM provides the most reliable tracking esti-

mates for all but two of the experiments where ORB-SLAM

provides fractionally higher success rates (e.g. 100% vs

99.3%). Crucially, NID-SLAM typically exceeds 80% suc-

cess when tracking against a map built under different con-

ditions (exceeding 95% for well-lit traversals), where LSD-

SLAM never exceeds 50% and ORB-SLAM varies widely

from less than 10% to over 80%. Apart from occasional

outliers all three methods provide RMS errors consistently

below 100mm and 5◦. All three methods failed to localise

using the Flashlight traversal against a map built using the

Lamp traversal; we attribute this to the low intensity non-

uniform illumination in the combination of these two traver-

sals.

1https://www.opengl.org/sdk/docs/man4/
2https://github.com/raulmur/ORB_SLAM2
3https://github.com/tum-vision/lsd_slam
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(a) (b)

Figure 8. Example images from the indoor New Tsukuba and outdoor Oxford RobotCar datasets used for evaluation. Clockwise from top

left: (a) an office environment under daylight, fluorescent, flashlight and lamp illumination; (b) an urban environment in sunny, overcast,

dusk, night, snow and rain conditions. The datasets were chosen to provide a range of challenging conditions for monocular SLAM.

PPPPPPPPP
Traversal 2

Traversal 1 Daylight Fluorescent Lamps Flashlight

%
RMSE

(mm)

RMSE

(◦)
%

RMSE

(mm)

RMSE

(◦)
%

RMSE

(mm)

RMSE

(◦)
%

RMSE

(mm)

RMSE

(◦)

Daylight

NID 99.3 4.7 0.22 96.7 7.8 0.58 73.9 67.9 14.24 74.6 64.2 2.25

LSD 96.1 36.4 1.93 48.6 59.8 2.93 26.1 33.2 1.53 25.5 89.5 4.40

ORB 100.0 25.5 1.20 81.4 21.4 0.20 9.5 20.9 0.91 0.1 12.8 0.48

Fluorescent

NID 95.0 12.0 1.05 99.7 8.5 0.41 85.3 59.4 5.39 95.8 27.9 0.80

LSD 55.5 52.6 2.44 96.5 14.7 0.53 38.6 76.5 3.67 29.7 70.0 3.80

ORB 85.4 18.4 0.26 99.7 15.9 0.64 7.1 291.1 1.51 10.7 125.2 3.39

Lamps

NID 88.3 33.8 1.39 93.6 25.2 0.95 93.1 19.6 0.73 84.3 72.8 3.98

LSD 6.6 90.2 5.01 46.8 93.2 4.30 71.7 8.0 0.05 11.9 72.3 2.80

ORB 35.4 21.4 0.65 24.6 27.8 0.57 83.1 18.5 0.62 1.6 24.4 0.25

Flashlight

NID 23.8 41.2 0.88 92.2 38.5 1.72 0.00 N/A N/A 92.0 24.6 1.17

LSD 15.7 91.0 4.54 27.2 88.4 4.91 0.00 N/A N/A 88.7 36.4 1.93

ORB 19.4 17.2 0.29 30.0 24.7 0.25 0.00 N/A N/A 22.7 50.8 1.28

Table 2. Indoor tracking results on the New Tsukuba dataset.

3.2. Depth Map Refinement

To evaluate the NID depth map update approach in Sec-

tion 2.3 we compare the depth map errors before and af-

ter the second traversal, computed using the ground truth

depth maps provided in the New Tsukuba dataset. Table

3 presents the depth map errors for the indoor evaluation.

The leading diagonal lists the median depth error for the

first traversal for each condition, while the off-diagonal el-

ements list the depth errors after a second traversal in a dif-

ferent condition.

The NID depth map update successfully reduces depth

errors by up to 6% on the second traversal for all of the Day-

light, Fluorescent and Lamp conditions. However, traver-

sals involving the Flashlight condition provide between

15% reduced errors and 15% increased errors; we attribute

this to the highly dynamic illumination conditions during

the traversal (since all light in the scene is emitted from the

point of view of the camera). Since only a small portion of

the scene is lit at a time, there are fewer samples available to

update the histogram required for reliable NID-based depth

updates.

◗
◗
◗
◗
◗

2

1
Daylight Fluorescent Lamps Flashlight

Daylight 60.9
65.2

(-4.25%)

56.5

(-5.99%)

58.0

(-2.84%)

Fluorescent
60.8

(-0.16%)
68.1

57.7

(-3.99%)

67.3

(+12.73%)

Lamps
59.9

(-1.64%)

64.6

(-5.14%)
60.1

67.9

(+13.74%)

Flashlight
52.3

(-14.12%)

68.1

(+0%)

67.2

(+11.8%)
59.7

Table 3. Depth map refinement on the New Tsukuba dataset. All

measurements are median depth map errors in units of millimetres;

percentages in brackets show the change in errors after the second

traversal.

3.3. Robust Outdoor Tracking

For the outdoor RobotCar dataset, no metric ground truth

is provided between traversals, but stereo visual odometry

for each traversal is available. We generated an approximate

key-frame correspondence between datasets based on accu-

mulated metric distance along the route, and classify locali-

sation failure as either self-reported (as above) or more than
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❜
❜
❜

2 1
Overcast Dusk Snow Sun Rain Night

NID LSD ORB NID LSD ORB NID LSD ORB NID LSD ORB NID LSD ORB NID LSD ORB

Overcast 100 76.28 100 96.6 0.3 42.6 85.3 0.3 12.9 7.9 0.0 0.1 4.3 0.0 0.0 0.0 0.0 0.0

Dusk 88.2 10.68 100 99.3 64.1 47.8 21.8 18.5 15.2 21.9 1.72 0.1 4.2 0.37 0.0 0.0 0.0 0.0

Snow 97.3 0.0 0.1 91.7 4.94 57.8 99.9 40.5 45.7 0.1 0.8 0.1 0.0 0.0 0.0 0.0 0.0 0.0

Sun 10.1 0.2 0.1 0.0 0.0 0.1 11.4 0.0 0.1 98.7 9.27 100 0.0 0.0 0.0 0.0 0.0 0.0

Rain 6.4 0.8 0.1 4.2 0.0 0.1 0.0 1.2 0.1 0.0 0.1 0.1 94.1 5.0 0.0 0.0 0.0 0.0

Night 1.9 0.1 0.1 0.1 0.2 0.1 5.7 0.0 0.0 0.0 0.0 0.1 1.0 0.1 0.0 0.0 0.0 0.0

Table 4. Outdoor tracking success rates using the Oxford RobotCar Dataset.

3 keyframes from the expected active keyframe (approxi-

mately 10m absolute error). Table 4 presents the localisa-

tion success rate for each of the outdoor experiments.

The outdoor traversals were significantly more challeng-

ing than the indoor experiments; only NID-SLAM success-

fully generated a map on the first traversal for the first five

conditions. Despite the addition of exposure compensation,

LSD-SLAM only succeeded in mapping short sections of

the Overcast, Dusk and Snow traversals, and ORB-SLAM

failed to produce a map for the Rain traversal due to the

blurring effects of raindrops on the camera lens. None of

the methods could successfully produce SLAM maps using

the night traversal.

NID-SLAM again provides the most reliable tracking es-

timates, with localisation success rates exceeding 80% for

all combinations of the first three traversals apart from Dusk

against a Snow map, however it struggled to provide bet-

ter than 10% success for the more challenging traversals

(Sun, Rain and Night). ORB-SLAM provided impressive

100% success rates for a small number of traversals, but

less than 0.1% success for many of the more challenging

conditions. Unsurprisingly, LSD-SLAM provided the least

reliable tracking estimates, since the appearance change

between traversals (and even between frames in the same

traversal) strongly violates the static scene illumination as-

sumption required for photometric error minimisation.

3.4. Limitations

NID-SLAM provides robust and accurate tracking and

mapping in the presence of appearance changes in compari-

son to both ORB-SLAM and LSD-SLAM; however as illus-

trated above it is not without limitations. The NID metric

is less robust to depth errors and relies on well-initialised

depth samples. Currently we use photometric tracking for

initialisation of the first key-frame and photometric depth

update for the first visit to each key-frame to provide well-

initialised depth maps for subsequent traversals. As shown

in Section 3.3, the combination of darkness, high pixel

noise, harsh dynamic lighting and motion blur during the

outdoor night dataset caused all approaches to fail to map

the first traversal; even the NID metric is not sufficient for

these most challenging illumination conditions.

Loop closures provided by FAB-MAP are tolerant to ap-

pearance change provided the system has been trained in the

appropriate environment, however as reported in [12] even

descriptor matching fails under large appearance changes.

We seek to replace this stage in the pipeline with either

a MI-based approach [25] or a convolutional network ap-

proach [33].

Finally, the computational costs of NID-SLAM are

higher than both ORB-SLAM and LSD-SLAM due to the

use of a dense global metric. Our portable OpenGL im-

plementation currently provides 10Hz updates on a desktop

GPU (suitable for robotics or automotive applications); we

expect similar computational performance from upcoming

mobile graphics processors in the near future.

4. Conclusions

We have presented a robust monocular SLAM approach

based on Normalised Information Distance, which we call

NID-SLAM. In contrast to existing feature-based and direct

photometric methods, NID-SLAM uses a global appearance

metric to solve for camera pose relative to a key-frame depth

map even in the presence of significant scene changes due

to illumination, weather, and occluding objects. We pre-

sented three primary contributions: (1) a NID-based track-

ing approach that explicitly incorporates depth uncertain-

ties into the estimated pose solution; (2) a multi-resolution

histogram representation for NID-based tracking that in-

creases the convergence basin for pose estimation; and (3)

a NID-based depth map update method, which allows for

long-term map refinement and maintenance despite appear-

ance change. Our approach provides tracking and mapping

accuracy rivalling state-of-the-art feature-based and direct

photometric methods, and significantly outperforms these

methods in robustness to appearance changes in both indoor

and outdoor environments. We hope NID-SLAM unlocks a

wide range of AR/VR and robotics applications that require

robust and accurate long-term visual SLAM capabilities.
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