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Abstract

We study the problem of answering questions about im-

ages in the harder setting, where the test questions and cor-

responding images contain novel objects, which were not

queried about in the training data. Such setting is inevitable

in real world—owing to the heavy tailed distribution of the

visual categories, there would be some objects which would

not be annotated in the train set. We show that the perfor-

mance of two popular existing methods drop significantly

(up to 28%) when evaluated on novel objects cf. known ob-

jects. We propose methods which use large existing exter-

nal corpora of (i) unlabeled text, i.e. books, and (ii) images

tagged with classes, to achieve novel object based visual

question answering. We do systematic empirical studies,

for both an oracle case where the novel objects are known

textually, as well as a fully automatic case without any ex-

plicit knowledge of the novel objects, but with the minimal

assumption that the novel objects are semantically related

to the existing objects in training. The proposed methods

for novel object based visual question answering are mod-

ular and can potentially be used with many visual ques-

tion answering architectures. We show consistent improve-

ments with the two popular architectures and give qualita-

tive analysis of the cases where the model does well and of

those where it fails to bring improvements.

1. Introduction

Humans seamlessly combine multiple modalities of

stimulus, e.g. audio, vision, language, touch, smell, to make

decisions. Hence, as a next step for artificial intelligence,

tasks involving such multiple modalities, in particular lan-

guage and vision, have attracted substantial attention re-

cently. Visual question answering (VQA), i.e. the task of

answering a question about an image, has been recently in-

troduced in a supervised learning setting [21, 3]. In the cur-

rently studied setup, like in other supervised learning set-

tings, the objects in the training data and the test data over-
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Is the dog black and white ?Is the cat black and white ?
Yes

Train on known objects Test on unknown objects

Figure 1: We are interested in answering questions about

images containing objects not seen at training.

lap almost completely, i.e. all the objects that appear dur-

ing testing have been seen annotated in the training. This

setting is limited as this requires having training data for

all possible objects in the world—this is an impractical re-

quirement owing to the heavy tailed distribution of the vi-

sual categories. There are many objects, on the tail of the

distribution, which are rare and annotations for them might

not be available. While humans are easily able to gener-

alize to novel objects, e.g. make predictions and answer

questions about a wolf, when only a cat and/or a dog were

seen during training, automatic methods struggle to do so.

In the general supervised classification, such a setting has

been studied as zero shot learning [15], and has been ap-

plied for image recognition as well [11, 14, 36, 40]. While

the zero shot setup works with the constraint that the test

classes or objects were never seen during training, it also

assumes some form of auxiliary information to connect the

novel test classes with the seen train classes. Such infor-

mation could be in the form of manually specified attributes

[11, 14, 40] or in the form of relations captured between the

classes with learnt distributed embeddings like, Word2Vec

[23] or GloVe [25], of the words from an unannotated text

corpus [36]. In the present paper, we are interested in a sim-

ilar setting, but for the more unconstrained and challenging

task of answering questions about novel objects present in

an image. Such a setting, while being natural, has not been

studied so far, to the best of our knowledge.

We start studying the problem by first proposing a novel

split (§4.1), into train and test sets, of the large-scale pub-
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lic dataset for VQA recently proposed by Antol et al. [3].

Our split ensures that the novel objects in the test set are

never seen in the train set; we select the novel objects and

put all the questions that contain those objects into the test

set along with all the questions whose answers contain them

as well. This means that the train set does not contain any

question which either (i) makes a query about the novel ob-

jects, or (ii) queries about some aspect of the image which

indicates any of the novel objects, i.e. has any possible an-

swer mentioning the novel object. Hence, the split is strong

as any information about the novel object is missing from

the train set.

We then take two deep neural network based architec-

tures which have shown good performance on tasks based

on language and vision combined [18, 26]. We benchmark

them on the new split for novel object VQA and compare

the performances on the known object setting. As expected,

we find that the performances drop significantly (up to 28%)

when there are novel objects in the test set. We then propose

two methods based on deep recurrent neural network based

multimodal autoencoder, which exploit large existing auxil-

iary datasets of text and images, to answer questions about

novel objects, with the two architectures studied. The pro-

posed frameworks are modular and can be used with many

neural networks based VQA systems. We show that the

proposed methods improve the performance of the system,

equally when (i) an oracle is assumed, that gives the novel

test objects and (ii) when the minimal assumption is made

that the novel test objects are semantically related, quan-

tified by their similarity in distributed Word2Vec embed-

ding space [23], to the train objects. We extensively study

multiple configurations quantitatively and also analyse the

results qualitatively to show the usefulness of the proposed

method in this novel setting.

2. Related works

Image based question answering was introduced by Ma-

linowski and Fritz [20] as the Visual Turing Test. With the

large scale dataset, introduced by Antol et al. [3], recently

there has been a lot or interest in the problem. The sur-

vey by Wu et al. [34] categorizes the methods for VQA into

three categories. First, the joint embedding based methods,

which bring the visual and textual vectors into a common

space and then predict the answer [8, 9, 21, 24, 27, 1, 2],

second, attention based systems which focus on the rele-

vant spatial regions in the images which support the ques-

tion [5, 19, 29, 38, 39, 41] and finally, third, which are based

on networks with explicit memory mechanisms [13, 37].

Malinowski et al. [21] and Gao et al. [9] encode the ques-

tion and image using an LSTM and use a decoding LSTM to

generate the answers. Ren et al. [27] predict a word answer

using a multi-class classification over a pre-defined vocabu-

lary of single word answers. Fukui et al. [8] propose a mul-

timodal bilinear pooling, using Fourier space computations

for efficiency.

Zhu et al. [41] augment the LSTM with spatial attention,

by learning weights over the convolutional features. Sim-

ilarly, Chen et al. [5] generate a question-guided attention

map using convolution with a learnt kernel. Yang et al. [39]

use stacked attention networks that iterate to estimate the

answer. Xu et al. [38] propose a multi-hop image atten-

tion scheme, where the two types of hops are guided by

word-based and question-based attention. Shih et al. [29]

use region proposals to find relevant regions in the image

w.r.t. the question and potential answer pairs. Lu et al. [19]

propose a hierarchical co-attention model where both image

and question steer the attention over parts of each other.

Dynamic Memory Networks of Kumar et al. [13] and

their variants [33, 30, 4], have been recently adapted and

applied to VQA by Xiong et al. [37]. They use an explicit

memory to read and write depending on the input question,

allowing them to understand the questions better.

Methods which use auxilary image or text datasets or

other sources of knowledge have also been proposed. Wang

et al. [31, 32] propose methods which use knowledge bases

for VQA. Wu et al. [35] predict semantic attributes in the

image and exploit external knowledge bases to query for

related knowledge, to better understand the question.

Similar in spirit to the current work, zero shot learn-

ing, i.e. when the set of test classes is disjoint from the

set of train classes, has been well studied in the literature

[11, 14, 15, 40]. Zero shot learning aims to predict novel

object categories without any visual training examples but

with auxilary relations between the known and unknown

objects, e.g. in the form of common attributes. Lampert et

al. [14] proposed to use attributes for zero shot image classi-

fication while more recent work by Xian et al. [36] showed

that it could be achieved using embeddings learnt from un-

supervised text data. Most of the current state-of-the-art

methods for zero shot classification use an embedding based

approach where the images and classes (the word for the

class, e.g. ‘dog’, ‘cat’) are embedded into respective spaces

and a bilinear compatibility function is learnt to associate

them [7, 36].

Our work is also related to the recent works on autoen-

coders for vector sequences based on recurrent neural net-

works (RNN). Such autoencoders have been recently used

in text processing [16, 6] as well for doing semi-supervised

learning and fine tuning of RNN based language models.

3. Approach

We are interested in extending the VQA models to bet-

ter answer questions about novel objects by being aware of

them both textually and visually. Towards that end, we start

with two existing architectures, for VQA, and expose them

to extra information, from auxiliary datasets of text and im-
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ages, in a carefully designed manner. This allows them to

be able to answer questions about novel objects that are not

present in the VQA training data. We consider two suc-

cessful deep neural network based architectures, illustrated

in Figure 2, whose variants have been used in recent liter-

ature [18, 26]. We first describe the base architectures and

then give the proposed training and architectural extensions

for novel object induction.

3.1. Base Architectures

Architecture 1. The first architecture, shown in Figure 2

(left), proposed by Lu et al. [18], uses a Long Short Term

Memory (LSTM) based recurrent neural network, to encode

the question as xQ ∈ R
dQ , and a Convolutional Neural Net-

work (CNN) to encode the image as xI ∈ R
dI . The two

encoded representations are then projected to a common

multimodal space with projection matrices WQ ∈ R
d×dQ

and WI ∈ R
d×dI respectively. The projected vectors are

then multiplied element-wise to obtain the joint multimodal

representation of the question and the image. This represen-

tation is then, in turn, projected to the answer space using a

fully connected layer to obtain probabilities over the set of

possible answers,

pQI = WQI (tanh(WQxQ)⊙ tanh(WIxI)) . (1)

Here, pQI is the unnormalized probability distribution over

the set of all possible answers, given the image, question

pair i.e. the model treats the VQA task as a multimodal sig-

nal classification task. The answer with the maximum prob-

ability is then taken as the predicted answer.

Architecture 2. The second architecture, shown in Figure 2

(right), proposed by Ren et al. [26], borrows ideas from im-

age captioning literature. It treats the image as the first word

of the question, by projecting the image feature vector xI to

the word embedding space with a learnt projection matrix

We. Following the image first, the question words are then

passed one at a time to the LSTM. The hidden state vector of

the LSTM after the last time step, which now becomes the

joint embedding of the question and the image, is then pro-

jected to the answer space to obtain the probabilities over

the set of answers, similar to Architecture 1 above.

3.2. Inducing novel objects using auxiliary datasets

Given the above two architectures, we now explain how

we introduce novel objects using auxiliary datasets. We ex-

periment with two different settings, first, when the novel

words are known textually, and, second, when the novel

words are not known. The former is similar to the zero-

shot classification [14] setting where the unknown classes

are never seen visually at training but are known textually.

In the latter, we make the assumption that the novel words

are semantically close to the known words; where we use

the vector similarity of the words in a standard distributed

word embedding space, e.g. word2vec [22]. Given the

novel words from the two settings, to make the system

aware of novel concepts, we have two sources of auxil-

iary information. We could use large amount of text data,

e.g. from Wikipedia or books, as well as image data from

large datasets such as ImageNet [28]. We now describe the

different ways in which we propose to exploit such auxil-

iary datasets for making the above described VQA systems

aware of novel objects.

Auxiliary text data only. In the first method we propose

to use only auxiliary text data for improving VQA perfor-

mance for novel objects. In most of the VQA architectures,

the question encoding is done with a recurrent neural net-

work such as the LSTM network. When large amount of

text data is available, which contains both the known and

novel objects and the relations between them (as could be

described textually), we hypothesise that pre-training ques-

tion encoder on the auxiliary dataset could be beneficial.

To pre-train the question encoder, we use an LSTM based

sequence autoencoder (AE), e.g. [6, 16]. The AE is pre-

trained on a large external text dataset, e.g. BookCorpus

[42]. Figure 3 illustrates the AEs (with the dashed block

absent, we explain it more below).

However, this is not a straightforward pre-training as the

text vocabulary needs to be expanded to contain the novel

words, so that the VQA system is aware of them and does

not just see them as UNK (special token for all words not in

vocabulary). It could be argued that pre-training with only

the current vocabulary may improve the encoder in general

and might help the VQA system—we test this system as

well in the experiments. To do such vocabulary expansion

is non-trivial; we could use a vocabulary from the external

corpus1, but such a vocabulary turns out to be very large and

can degrade the VQA performance. Thus, we evaluate two

ways to construct the vocabulary.

Oracle setting. First, we assume an oracle setting where

we know (textually) the novel words that will appear—this

is similar to the assumption in zero-shot setting2 [14]. We

add the known novel words to the current vocabulary and

train the AE on the auxiliary text data. Once trained, we

take the encoder weights from the AE to initialize the ques-

tion encoder in the VQA system.

General setting. Second, we assume that the novel words

would be semantically similar to the known words and,

thus, expand the vocabulary by adding words, from the ex-

ternal dataset, which are within a certain distance to the

known words. The semantic word distance we use is the

cosine distance between the word2vec embeddings [22]

of the known and novel words. This is a more relaxed as-

1All words with frequency above a threshold in the whole dataset
2Note that our setting is harder than zero-shot setting in [14] as here the

test set contains both the known and novel objects
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sumption compared to the oracle setting and we call this the

general setting.

In practice, however, we found that the direct AE train-

ing was noisy in this general setting as the vocabulary size

increased by nearly 4×. We found that the noise and insta-

bility of the the training mainly came from the word em-

beddings, i.e. the projection of the one-hot word represen-

tations before being fed to the recurrent unit, in the AE. In

order to train it more effectively, we thus use a pre-training

technique for initializing the word embeddings of the AE

as follows. We first train the AE on the BookCorpus with

the VQA vocabulary. We then take the words which ap-

pear both in the VQA vocabulary and the original trained

word2vec vocabulary. Using these words, we obtain a

projection to align the the word2vec vector space with

the currently learned word embedding space. Formally, de-

note the word2vec embedding matrix as Aw and the VQA

word embedding matrix as Av , then we find a projection

matrix M , using least squares, as

AwM = Av, i.e., M = (A⊤

wAw)
−1A⊤

wAv. (2)

Once the alignment matrix M is available, the words in the

general setting’s vocabulary, which are not in the VQA vo-

cabulary, are computed as

Âv(w) = Av(w)M, w ∈ Vg\Vv, (3)

where Vg is the vocabulary set of the general setting and Vv

is that of VQA vocabulary. We term this as vocabulary ex-

pansion from the first vocabulary to the second, similar in

spirit to the work by Kiros et al. [12]. Going a step further,

we initialize the word embedding matrix in the AE using

the estimated word vectors and train the AE again on Book-

Corpus, which we finally use with the base architecture as

in the other AE’s above.

Auxiliary text as well as image data. Apart from using

text only data to induce novel objects, we also attempt to

use freely available auxiliary image classification data, e.g.

ImageNet [28]. The general philosophy stays the same, we

wish to train auto-encoders with the auxiliary data, but in

this case such AE takes multimodal input in the form of both

text sentences and images, and decodes them back to the

sentences. We hope that such an AE3 will help induce novel

objects. To do so, we require paired image-text data and we

use the two auxiliary datasets to generate such paired data

synthetically and weakly as follows. We take images of

the words corresponding to objects in our text vocabulary

from the classification dataset such as ImageNet [28] and

pair them with general sentences about the object from the

text dataset, e.g. BookCorpus [42] or Wikipedia. Note that

this is expected to be a noisy paired data; we evaluate if such

noise is tolerated by the AE to still give some improvement

on the VQA task by learning lexico-visual associations for

novel objects.

Since the question encoder for the first architecture does

not use the image as an input, we design the correspond-

ing multimodal AE as shown in Figure 3 (left). We take

the output of the multiply layer and use it to initialize the

hidden state of the decoder. To keep the architecture consis-

tent with the text AE, we introduce a skip connection which

feeds the final hidden state of the encoder to the decoder’s

initial state. Adding such a skip layer ensures that the AE

will use the image encoding only if it is beneficial and we

hope that this will add resilience to the noise in the synthet-

ically generated paired data. We, thus, effectively sum the

final hidden state of the encoder and the output of the mul-

tiply layer to obtain the initial decoder state. In case of the

second architecture, we just use the image encoding as the

first input to the LSTM based AE, as shown in the dashed

part of Figure 3 (right).

4. Experiments

We now describe the experiments we performed to val-

idate the method and study VQA when novel objects are

present in the test set. We first describe the datasets we

used, followed by the new split we created to have novel

objects in the test set. We then give our quantitative and

qualitative results, with discussions.

VQA dataset [3] is a publicly available benchmark which

consists of images obtained from the MSCOCO dataset [17]

3It is not strictly an AE as it is only decoding back the text part and

not the image part. We refrained from decoding back the images, as initial

results were not encouraging; also, image generation from encoded vectors

is a complete challenging problem in itself [10].
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VQA dataset

#images 204,721

#ques 614,163

#ans per ques 10

#ques Types more than 20

#words per ans one or more

BookCorpus

#books 11,038

#sentences 74,004,228

#unique words 984,846,357

avg #words / sent. 13

Table 1: Statistics of datasets used

and an abstract scenes dataset. The statistics of the dataset

are shown in Table 1. The models are evaluated on the VQA

dataset using the accuracy metric defined as

acc = min

(

# humans that provided that answer

3
, 1

)

. (4)

BookCorpus [42] dataset has text extracted from 11, 038
books available on the web. Summary statistics of the

dataset are shown in Table 1. We created a split consisting

of 73, 874, 228 training, 30, 000 validation and 100, 000 test

sentences to train the AEs.

ImageNet dataset from the ILSVRC challenge [28] consists

of images collected from Flickr and other search engines.

Each image is labelled with the presence or absence of one

out of 1000 object categories. The training set consists of

1.2 million training images, 50, 000 validation images and

100, 000 test images. We have used ImageNet to obtain im-

ages for the known and unknown objects.

Wikipedia. The text data obtained from BookCorpus did

not have sentences containing some of the novel objects.

Also, the data obtained from BookCorpus was story ori-

ented and not factual data, hence the sentences containing

certain objects did not describe the objects themselves, but

just contained the objects as a part of a narrative. In order to

complement the data from BookCorpus and obtain descrip-

tive information about novel objects, we queried Wikipedia4

by searching for sentences containing the novel objects.

Weak paired training data. To generate synthetic paired

data, we consider all the objects from the oracle/general vo-

cabulary and find an intersection with the ImageNet classes.

For each of the objects, we obtain m random images from

the matched classes and n random sentences containing the

object from BookCorpus and pair them to obtain mn sets

of paired images and sentences. In our case, we selected

m = 20 and n = 20. This constitutes the weak paired

training data which amounted to approximately 0.25 mil-

lion samples for the oracle case and 0.45 million samples

for the general case.

4.1. Proposed Novel Split for VQA dataset

We create a new split of the VQA dataset to study the

setting of novel objects at test time. We obtain the train and

validation split of the real scenes part of VQA dataset [3]

and call this the original split. The questions from the train

4Source: https://dumps.wikimedia.org/enwiki/

latest/enwiki-latest-pages-articles.xml.bz2

# Questions # Objects

Split Train Val Test Train Test Both

Orig 215375 0 121509 3625 3330 3178

Prop 224704 5000 116323 2951 3027 2216

Table 2: Statistics of the dataset splits. The proportion of

seen test objects is 95.4% in original vs. 73.2% in proposed.

#Known objs 0 1 2 3 4 5

#Questions 32452 35300 12593 2605 501 48

Table 3: The number of questions with specific number of

known words in test set.

Architecture 1

Open Ended Questions Multiple Choice Questions

Split Ov.all Oth. Num. Y/N Ov.all Oth. Num. Y/N

Orig 54.23 40.34 33.27 79.82 59.30 50.16 34.41 79.86

Novel 39.38 23.07 27.52 74.02 46.54 34.91 29.39 74.10

Drop 14.85 17.27 5.75 5.8 12.76 15.25 5.02 5.76

Architecture 2

Open Ended Questions Multiple Choice Questions

Split Ov.all Oth. Num. Y/N Ov.all Oth. Num. Y/N

Orig 48.75 33.31 31.42 74.20 54.94 45.24 32.95 75.28

Novel 34.97 16.98 28.27 71.06 42.83 30.16 29.42 71.12

Drop 13.78 16.33 3.15 3.14 12.11 15.08 3.53 4.16

Table 4: The drop in performance for novel word setting.

split are used for training and the questions from the valida-

tion split are used for testing. Next, we divide the full set of

images, train and validation combined, into new train and

test split as follows. For each of the questions in the VQA

dataset, we identify the nouns5 and create a histogram of

the types of questions each noun occurs in. We use normal-

ized histograms to cluster the nouns into 14 clusters. We

select 80% of the nouns as known and 20% of the nouns as

novel, randomly from each of the 14 clusters. A question

in the VQA dataset belongs to the new test set if and only

if at least one of the novel nouns occur in it. We randomly

sample 5000 questions from the train split to create the val-

idation split. The statistics of the original split and the new

proposed are shown in Table 2—note that, while the origi-

nal test split contains 3178 known objects out of 3330 total,

the proposed test split has only 2216 known objects out of

a total of 3027, i.e. 811 objects that appear in the test split

were never seen (visually or textually) in the VQA train-

ing data 6. Further, Table 3 shows the number of questions

where 0 to 5 known objects appear as well (in addition to at

least one unknown object). We see that a large number of

question, i.e. 32452 contain only novel objects.

Implementation details. In the case of Architecture 1, we

used the default settings of 200 dimensional word encod-

ing size, 512 RNN hidden layer size and 2 RNN layers

for computing the results on the case of training only with

VQA dataset. To avoid very long training times, with the

5We used NLTK’s PerceptronTagger for obtaining the nouns http:

//www.nltk.org/_modules/nltk/tag/perceptron.html
6The design of the dataset leads to sharing of images between the train

and test splits; see supplementary material for detailed discussion.
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above large parameter values for other architectures, we se-

lected 512 dimensional word encoding, 512 RNN hidden

layer size and 1 RNN layer for computing all our results.

We observed that this did not affect our results appreciably.

Similarly, in Architecture 2, we used 512 dimensional word

encoding, 512 RNN hidden layer size and 1 RNN layer

throughout all our experiments.

4.2. Quantitative Results

Our overall results for the two architectures are shown

in Table 5. The results are split into the standard ques-

tion types of Overall, Others, Numbers and Yes/No. We

also introduce the Novel question type which consists of all

the questions which contain only the novel objects and no

known objects (32452 questions from Table 3). This helps

us analyse the performance of novel object VQA without

interference from the known objects. The image feature,

auxilliary data and the vocabulary used for each of the ex-

periments has been specified. The image feature can be

VGG, INC (Inception), EF (Early fusion of VGG, INC)

or LF (Late fusion of VGG, INC), the auxilliary data can

be none (baseline), text (BookCorpus pre-trained AE)

or text+im (BookCorpus + WeakPaired data pre-trained

AE) and the vocabulary can be train (only words from

train data of novel split), oracle (oracle case), gen (gen-

eral case) or gen(exp) (vocabulary expansion in general

case). We analyse our results in terms of the need to incor-

porate novel words, effects of different features, vocabulary

expansion and pre-training methods on the overall perfor-

mance. In the following, we refer to a cell in the tables

with the Architecture number, the row number and the type

of questions (others, numbers etc. in Open Ended or Mul-

tiple Choice questions). If we do not specify the sub-type

of questions for OEQ or MCQ, then we are discussing the

overall averages for these two types.

Performance on original vs. novel split. Table 4 gives the

results of the two architectures on the original and novel

splits, respectively, without using any data outside of the

VQA dataset7. We obseve a severe drop in perfomance,

e.g. Architecture 1 (2) drops by 27% (28%) on average for

the open ended questions, and 21% (22%) on the multiple

choice ones. This highlights the fact that the current meth-

ods are not capable of generalizing on VQA to novel objects

when not explicitly trained to do so. This empirically veri-

fies the argument that VQA in the novel object setting is a

challenging problem and deserves attention on its own.

Naı̈ve pre-training is not sufficient. An obvious first ar-

gument, as discussed in Sec. 3.2, is that pre-training the

7While the training/testing data are not same, and hence the perfor-

mances are not directly comparable, we note that the amount of training

data is ∼ 4% more for the models trained in the novel setting (Table 2). If

the difficulties of the settings were similar, the novel models should have,

arguably, done better due to access to more training data.

text model on the large amount of auxiliary text data, might

make it better and hence lead to improved performance,

even when the vocabulary is kept the same as the original

one (which does not contain the novel words). We tested

this hypothesis and found it to not be true. While text only

pre-training (rows A1.b, A2.b in Table 5) provided some

improvements over the baseline (row A1.a) in most cases,

e.g. 39.38 to 40.09 in A1.b OEQ, 46.47 to 47.01 in A1.f

MCQ, they were generally minor, especially in the high

performing models; some isolated larger improvements did

happen, e.g. +6.6% (34.97 to 37.30) in A2.b OEQ, but

they were not consistent and happened in the relatively low

performing cases only. However, the text only pre-trained

models with the oracle and general vocabularies provided

consistent improvements, e.g. +2.7% (39.38 to 40.44) in

A1.c OEQ, +2.3% (40.27 to 41.19) A1.g OEQ, +7.7%
(34.97 to 37.68) in A2.c OEQ and +2.3% (37.66 to 38.53)

in A2.g OEQ, as they were capable of understanding novel

objects. Hence, we conclude that simple pre-training with-

out adding the novel objects to the vocabulary is not suffi-

cient for novel object test setting in VQA.

In the following, all the discussion are w.r.t. methods using

vocabularies incorporating novel objects.

Comparison of architectures. We found that that Archi-

tecture 1 generally performed better than Architecture 2,

e.g. 39.38 on A1.a OEQ vs. 34.97 on A2.a OEQ, 39.56 in

A1.k OEQ vs. 35.65 on A2.k OEQ. The relative improve-

ments obtained with the better performing architecture over

the corresponding baseline were, unfortunately, generally

lesser, e.g. +6.2% and +4.2% in A1.i OEQ and MCQ vs.

+11.1% and +8.5% in A2.i OEQ and MCQ, both with

early fusion of VGG and Inception features, respectively,

indicating that it is more difficult to improve performance

for more saturated methods. We do, however, see consis-

tent improvements in majority of cases for both the Archi-

tectures, supporting the proposed method.

Auxiliary text data. The models initialized from auxiliary

text data, with both oracle and general vocabularies, provide

significant improvement in the Yes/No, e.g. +5.6% (71.06
to 75.06) in A2.c OEQ, +4.4% (73.25 to 76.49) in A1.q

OEQ, and Novel questions, such as 2.5% (48.03 to 49.23)

in A1.g OEQ, +5.2% (44.60 to 46.93) in A2.c OEQ. The

proposed model improves on Yes/No questions as they gen-

erally have a central object, e.g. ‘is the little dog wearing a

necktie?’ (Fig. 4, image on left-top), and when this object

(necktie here) is unknown the baseline model fails to under-

stand the question. Similar trend is visible in the ‘Novel’

type.

The effect of the general (automatic) vocabulary expan-

sion technique is similar to the oracle case, where the novel

objects are assumed to be known a priori. The overall re-

sults with oracle vocabulary vs. general vocabulary are sim-
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ilar, i.e. 41.84 vs. 41.82, 48.87 vs. 48.35, for A1.(i,s) OEQ

and MCQ, respectively, and 39.49 vs. 39.91 and 46.40 vs.

46.99 for A2.(i,t) OEQ and MCQ, respectively. Thus, we

conclude that the proposed method is capable of leveraging

auxiliary text data to improve novel object VQA, in the au-

tomatic setting when the minimal assumption is made that

the novel words are expected to be semantically similar to

the known words.

Vocabulary expansion. Generally, the accuracy of the sys-

tem improves with vocabulary expansion on the Yes/No

and Novel question categories when compared to the accu-

racy of the non-expanded setting, e.g. 75.48, 48.78 in A1.p

OEQ vs. 76.49, 49.36 in A1.q OEQ and 74.38, 51.29 in

A2.l MCQ vs. 75.28, 52.47 in A2.m MCQ. This follows the

trend from auxiliary text data where we observed similar

improvements, and is expected since vocabulary expansion

is simply a better way to perform text only pre-training.

Auxiliary text and image data. Using both auxiliary

datasets of text and image, as proposed, led to consistent but

small improvements over using only auxiliary text datasets.

As an example, consider Inception features for Architec-

ture 2 in A2.f–h OEQ. The baseline of 37.66 is improved

to 38.53 (+2.3%) by oracle vocabulary expansion and use

of auxiliary text data which is further improved to 38.75
(+2.9%) when using both auxiliary data of both text and

image—the major improvement comes from using text data

and a further small improvement is achieved by using im-

age data as well. We believe that since the text data is rela-

tively clean and rich, it provides good semantic ground for

the model to understand the novel objects, while the noisy

method of generating weak text-image paired data as pro-

posed is not able to supplement it significantly, and some-

times even deteriorates it slightly. Also, since the image

model may have seen the novel objects a priori, this may

not have a significant impact on the overall results.

Additional observations. Apart from the above main ob-

servations, we found that Inception features were generally

better than VGG features for VQA. However, most of the

improvement of Inception over VGG features was in the

“others” category, e.g. 23.07 in A1.a OEQ vs. 24.54 A1.e

OEQ and 30.74 in A2.k MCQ vs. 31.87 in A2.o MCQ. The

Inception baseline models do not generally perform better

than VGG baseline models on the “Novel” questions, espe-

cially in Architecture 1 which is the stronger architecture.

Therefore, improving image features alone is not sufficient

for better novel objects based VQA. This is expected since

the text model is still the same and without improvements in

the text model or better joint modelling, we cannot expect a

significant difference in performance on novel objects.

4.3. Qualitative results

Figure 4 shows some example images with the questions

and their answers from the different methods. In the first

row, we can observe that proposed model (corresponding to

A1.s) has successfully induced the concepts of mouse, ap-

ple, event and flavor into the VQA framework whereas the

baseline (corresponding to A1.k) has failed to reason based

on them. Some of the failure cases of the proposed model

are illustrated in the second row. It has failed to induce the

concepts of restaurant and direction. We also feel that in the

last 2 cases, it has predicted purely based on the text mod-

elling. For example, in the fourth case it says that the plane

is in motion and in the fifth case it says the ink is red. This

could be because it witnessed similar textual examples and

the image is not convincing enough for it to say otherwise.

5. Conclusion

We presented a new task of VQA based on novel objects

which were not seen during training. This is a relevant set-

ting as in real world, owing to the heavy tailed distribution

of the visual categories, many rare objects are not expected

to have annotations. We showed that this is a challenging

scenario and directly testing the models which had not seen

the objects during training leads to substantial degradation

in performances of up to 28%. We proposed to use auxil-

iary datasets of text, e.g. books and Wikipedia, and images,

e.g. ImageNet, to make the system aware of the novel ob-

jects it might encounter during testing. We showed that in-

creasing the vocabulary, to include possible novel words, is

important and a simple pre-training on the auxiliary data is

not sufficient. We proposed two methods for incorporating

novel objects in VQA systems. In the first oracle method,

we assumed that the novel objects that would appear are

given to us, while in the second we made the weaker as-

sumption that the novel words will be semantically similar

to the known words. We also proposed a method to use ex-

ternal labeled image datasets to form noisy image-text pairs

for pre-training the VQA architectures. Our results demon-

strated that making the model aware of novel objects us-

ing vocabulary expansion and pre-training on external text

datasets significantly improves the performance for VQA

in novel test object setting e.g. by +3.4% on the Yes/No

questions, +3.6% on Numbers, +11.48% on Others and

+4.8% on Novel for Architecture 1 and by +6.76% on the

Yes/No questions, +2.2% on Numbers, +24.4% on Oth-

ers and +8.7% on Novel for Architecture 2 in OpenEnded

questions category. However, the gains from external im-

age datasets were either absent or were only modest. We

believe that the external text datasets provided a clean and

rich source of knowledge while the paired image informa-

tion was noisy and hence relatively less effective.
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Is the little dog wearing a necktie? What color is the apple? What event is this? What flavor is the cake? What ethnicity is the baby?
P: no, B: yes, GT: no P: green, B: red, GT: green P: baseball, B: yellow, GT: green P: chocolate, B: left, GT: chocolate P: asian, B: left, GT: asian

Is this a restaurant? What direction is the bear facing? Is this plane in motion? How many teams are in the photo? What color ink is in the pen?
P: no, B: yes, GT: yes P: brown, B: right, GT: right P: yes, B: no, GT: no P: 3, B: 2, GT: 2 P: red, B: blue, GT: blue

Figure 4: Qualitative examples highlighting the success and failure cases of our proposed model(P) cf. the baseline model(B)

and the ground truth(GT). The novel concepts are underlined in the question.

Architecture 1 (A1)
Open Ended Questions (OEQ) Multiple Choice Questions (MCQ)

Row Feat Aux Vocab Overall Others Numbers Yes/No Novel Overall Others Numbers Yes/No Novel
a VGG none oracle 39.38 23.07 27.52 74.02 47.56 46.54 34.91 29.39 74.10 52.32
b VGG text train 40.09 23.46 28.85 75.14 48.75 47.22 35.32 20.36 75.21 53.39
c VGG text oracle 40.44 23.42 28.24 76.52 48.95 47.65 35.39 29.89 76.60 53.77
d VGG text+im oracle 40.49 23.35 28.32 76.79 48.89 47.38 34.76 30.04 76.87 53.80
e INC none oracle 40.27 24.54 28.02 73.95 48.03 46.47 34.84 29.41 74.00 52.19
f INC text train 40.18 24.12 28.25 74.37 48.10 47.01 35.43 29.91 74.46 52.80
g INC text oracle 41.19 24.98 28.44 75.93 49.23 47.87 36.00 30.24 76.04 53.88
h INC text+im oracle 40.73 24.12 27.80 76.03 48.61 47.23 34.99 29.58 76.12 53.18
i EF text oracle 41.84 25.69 27.93 76.87 49.76 48.47 36.62 29.75 76.96 54.40
j LF text oracle 41.46 25.39 28.66 75.95 49.32 48.22 36.33 30.26 76.54 54.04

k VGG none gen 39.56 23.18 28.47 74.06 48.02 46.23 34.27 29.92 74.13 52.44
l VGG text gen 40.53 23.62 28.93 76.20 49.00 47.50 35.26 30.10 76.27 53.45

m VGG text gen(exp) 40.76 23.89 28.19 76.69 49.05 47.82 35.67 29.40 76.79 53.75
n VGG text+im gen(exp) 40.34 23.09 29.25 76.49 49.25 47.36 34.82 30.31 76.60 53.92
o INC none gen 40.25 24.86 28.12 73.25 47.77 46.53 35.28 29.56 73.33 52.07
p INC text gen 40.76 24.54 28.14 75.48 48.78 46.87 34.77 28.95 75.56 52.83
q INC text gen(exp) 41.39 24.96 28.83 76.49 49.36 47.88 35.74 30.09 76.62 53.77
r INC text+im gen(exp) 40.42 23.77 27.98 75.88 48.77 46.87 34.53 29.11 75.99 52.87
s EF text gen(exp) 41.82 25.72 28.51 76.55 49.60 48.35 36.57 29.81 76.65 53.92
t LF text gen(exp) 39.66 24.03 27.65 73.07 47.34 47.26 35.37 29.42 75.53 53.13

Architecture 2 (A2)
Open Ended Questions (OEQ) Multiple Choice Questions (MCQ)

Row Feat Aux Vocab Overall Others Numbers Yes/No Novel Overall Others Numbers Yes/No Novel
a VGG none oracle 34.97 16.98 28.27 71.06 44.60 42.83 30.16 29.42 71.12 49.38
b VGG text train 37.30 19.50 26.24 74.48 45.71 44.30 31.26 27.09 74.55 50.31
c VGG text oracle 37.68 19.50 28.28 75.06 46.93 45.12 31.91 29.64 75.11 51.67
d VGG text+im oracle 38.06 20.15 28.45 74.98 47.54 45.80 32.96 30.30 75.10 52.66
e INC none oracle 37.66 20.18 28.32 73.69 46.50 44.59 31.77 29.32 73.77 50.98
f INC text train 37.37 20.00 25.90 73.89 45.54 44.40 31.83 26.59 73.96 50.27
g INC text oracle 38.53 20.79 28.07 75.39 47.55 45.85 32.98 29.37 75.49 52.32
h INC text+im oracle 38.75 21.12 28.96 75.20 47.95 46.07 33.32 30.13 75.34 52.53
i EF text oracle 38.85 21.18 28.43 75.57 48.00 46.47 33.76 30.58 75.66 53.15
j LF text oracle 39.49 22.02 28.71 75.95 48.47 46.40 33.56 29.56 76.04 52.86

k VGG none gen 35.65 17.33 26.62 73.14 45.19 43.64 30.74 27.40 73.28 50.29
l VGG text gen 37.66 19.95 27.73 74.31 46.64 44.99 32.19 29.01 74.38 51.29

m VGG text gen(exp) 38.00 20.21 26.77 75.21 46.84 45.96 33.32 29.26 75.28 52.47
n VGG text+im gen(exp) 37.92 20.21 27.90 74.59 45.58 45.58 33.04 28.99 74.67 52.15
o INC none gen 37.29 19.59 28.76 73.50 46.16 44.63 31.87 27.40 73.28 50.29
p INC text gen 38.23 20.89 28.11 74.22 46.94 45.23 32.54 29.55 74.31 51.67
q INC text gen(exp) 37.99 20.59 26.30 74.65 46.31 45.89 33.54 29.01 74.72 51.84
r INC text+im gen(exp) 38.20 20.49 27.79 75.00 46.97 45.65 32.94 28.96 75.08 51.93
s EF text gen(exp) 38.37 21.13 28.82 74.00 47.10 45.46 33.00 29.99 74.05 51.89
t LF text gen(exp) 39.91 22.75 28.90 75.87 48.48 46.99 34.55 30.24 75.94 53.26

Table 5: Perfomances of the different models in the novel object setting for VQA
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