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Abstract

We present a Deep Convolutional Neural Network archi-

tecture which serves as a generic image-to-image regressor

that can be trained end-to-end without any further machin-

ery. Our proposed architecture, the Recursively Branched

Deconvolutional Network (RBDN), develops a cheap multi-

context image representation very early on using an efficient

recursive branching scheme with extensive parameter shar-

ing and learnable upsampling. This multi-context represen-

tation is subjected to a highly non-linear locality preserv-

ing transformation by the remainder of our network com-

prising of a series of convolutions/deconvolutions without

any spatial downsampling. The RBDN architecture is fully

convolutional and can handle variable sized images during

inference. We provide qualitative/quantitative results on 3
diverse tasks: relighting, denoising and colorization and

show that our proposed RBDN architecture obtains com-

parable results to the state-of-the-art on each of these tasks

when used off-the-shelf without any post processing or task-

specific architectural modifications.

1. Introduction

Over the last few years, generic deep convolutional

neural network (DCNN) architectures such as variants of

VGG [49] and ResNet [28] have been immensely success-

ful in tackling a diverse range of classification problems

and achieve state-of-the-art performance on most bench-

marks when used out of the box. The key feature of

these architectures is an extremely high model capacity

along with a robustness to minor unwanted (e.g. trans-

lational/rotational/illumination) variations. Given suitable

training data, such models can be discriminatively trained

in a reliable end-to-end fashion. However, since classifica-

tion tasks only require a single (potentially multi-variate)

class label corresponding to the entire image, early archi-

tectures focused solely on developing strong global image

features.

Semantic Segmentation was one of the first applica-

Figure 1. Proposed RBDN used for diverse Im2Im regression

tasks: (from left to right) Denoising, Relighting, Colorization.

tions to witness the extension of DCNNs to output dense

pixel wise predictions [42, 46, 12, 22, 27]. These ap-

proaches used either VGG or ResNet (without the fully

connected layers) as their backbone and introduced archi-

tectural changes such as skip layers [42], deconvolutional

networks [46, 4], hypercolumns [27] or laplacian pyra-

mids [22] to facilitate the retention/reconstruction of local

input-output correspondences. While these approaches per-

formed very well on segmentation benchmarks, they intro-

duced a trade-off between locality and context. Since the

task still remained one of classification (albeit at a pixel

level), the trade-off was skewed in favor of incorporating

more context and subsequently reconstructing local corre-

spondences from global activations. This is perhaps why

some of these approaches had to rely on ancillary methods

such as Conditional Random Fields (CRFs) [46, 12] to en-

hance the granularity of their predictions.

Image-to-Image (Im2Im) regression entails the gener-

ation of dense “continuous” pixelwise predictions, where

the locality-context trade-off is highly task-dependent (typ-

ically skewed more in favor of locality). Several DCNN

based approaches have been proposed for specific Im2Im

regression tasks such as denoising, relighting, coloriza-

tion, etc. These approaches typically involve highly task-
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specific architectures coupled with fine-tuned ancillary post

processing methods. However, unlike classification DC-

NNs, no truly generic architecture for Im2Im regression

has yet been proposed which performs consistently well

on a diverse range of tasks. It is perhaps the task-

dependent locality-context trade-off coupled with the ha-

bitual trend of incorporating VGG/ResNet architectures for

non-classification tasks, that have impeded progress in this

regard.

We propose a generic Im2Im DCNN architecture,

RBDN, which eliminates this trade-off and automatically

learns how much locality/context is needed based on the

task at hand, through the early development of a cheaply

computed rich multi-scale image representation using re-

cursive multi-scale branches, learnable upsampling and ex-

tensive parameter sharing.

2. Related Work

We first describe two recently proposed Im2Im DCNN

approaches [59, 51] which also have a fairly generic archi-

tecture and compare the similarities and differences with

our proposed RBDN approach. We then describe some of

the related work specific to relighting, denoising and col-

orization.

2.1. Generic Im2Im Regression

Deep End-2-End Voxel-2-Voxel prediction [51] pro-

posed a video-to-video regressor for solving 3 tasks: seman-

tic segmentation, optical flow and colorization. Their archi-

tecture consists of a VGG [49] style network on which they

add branches which upsample and merge activations. Un-

like Hypercolumns [27], they make the upsampling learn-

able and perform it in a more efficient way with weight

sharing. While [51] use upsampling to recover local corre-

spondences, DnCNN [59] on the other hand entirely elim-

inate downsampling and use a simple 18 layer fully con-

volutional network with residual connections for handling

3 tasks: denoising, super-resolution and jpeg-deblocking.

Our proposed RBDN architecture can be viewed as a hy-

brid of [59, 51]. While we do utilize multi-scale activations

like [51], we do so very early in the network and generate

a cheap composite multi-context representation for the im-

age. Subsequently, we pass the composite map to a linear

convolution network like [59].

2.2. Face Relighting

In the field of Face Recognition/Verification, while

most research focuses on extracting illumination-

invariant features, relighting is the relatively less

explored alternative [11] of directly making illu-

mination corrections/normalizations to an image.

Traditional face relighting approaches used the

Retinex [37]/Lambertian Reflectance [5] theory and used

spherical [54, 5]/hemispherical [2] harmonics, subspace-

based [10, 8] or dictionary-based [60, 61, 29, 43, 53, 47]

illumination corrections. Deep Lambertian Networks [50]

encoded lambertian models/illumination corrections di-

rectly into their network architecture. This however limited

the expressive power of the network, particularly due to

the strong lambertian assumptions on isotropicity and

absence of specular highlights, which seldom hold true for

face images. In section 4.2, we show that it is possible to

train a well-performing relighting model without making

any lambertian assumptions using our generic RBDN

architecture.

2.3. Denoising

Denoising approaches typically assume an Additive

White Gaussian Noise(AWGN) of known/unknown vari-

ance. Traditional denoising approaches include Cluster-

ingSR [19], EPLL [65], BM3D [16], NL-Bayes [39],

NCSR [20], WNNM [25]. Among these, BM3D [16] is the

most popular, very well engineered and still widely used as

the state-of-the-art denoising approach. Early DCNN based

denoising approaches [1, 32, 7, 57, 64] required a different

model to be trained for each noise variance, which limited

their practical use. Recently, a Gaussian-CRF based DCNN

approach (DCGRF [52]) was proposed which could explic-

itly model the noise variance. DCGRF could however only

reliably model noise levels within a reasonable range and

had to use two models: low-noise DCGRF (σ < 25) and

high-noise DCGRF (25 ≤ σ ≤ 50). In section 4.3, we

show that a single model of our proposed RBDN approach

trained on a wide range of noise levels (σ ≤ 50) achieves

competitive results and outperforms all the previously pro-

posed approaches at all noise levels σ ∈ [25, 55].

2.4. Colorization

The inherent color ambiguity in a majority of objects

makes colorization a very hard and ill-posed problem. Early

works on colorization [14, 44, 9, 55, 26, 41, 15, 18] re-

quired a reference color image from which the color of

local patches in the input image was inferred through

parametric/non-parametric approaches. Only recently, have

DCNN approaches [17, 30, 38, 62] been used to solve

colorization as an Im2Im classification/regression prob-

lem from grayscale to color without requiring auxiliary in-

puts. [17, 38] use Hypercolumns [27], while [30] use a com-

plex dual-stream architecture that simultaneously identi-

fies/classifies object classes within the image and uses class

labels to colorize the input greyscale image. The classi-

fication branch of their network is identical to VGG [49],

while the colorization branch of their network mimics the

DeconvNet [46] architecture. The best colorization results

however are obtained by [62] despite using a fairly simple

VGG [49] style architecture with dilated convolutions. The
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Figure 2. Architecture of proposed generic RBDN approach with 3 branches. The various branches extract features at multiple scales.

Learnable upsampling with efficient parameter sharing is used to recursively upsample the activations for each branch until it merges

with the POOL1 output, leading to a cheap multi-context representation of the input. This multi-context map is subjected to series of 9
convolutions which can supply ample non-linearity and automatically choose how much context is needed based on the task at hand.

key contribution of [62] is their novel classification-based

loss function over the quantized probability distribution of

ab values in the Lab color space. They further add a class

re-balancing scheme that pushes the predictions away from

the statistically likely gray colors, resulting in very colorful

colorizations. In section 4.4, we use the same loss function

as [62] but replace their VGG-style architecture with our

proposed RBDN architecture and obtain excellent coloriza-

tions.

3. Generic Im2Im DCNNs

Many Im2Im approaches use VGG/ResNet as their back-

bone because of their effectiveness and availability. How-

ever, this leads to suboptimal architectures (3.1) for these

types of tasks because of the inherent bias towards in-

cluding more context at the expense of sacrificing local-

ity. We instead propose RBDN (3.2) which uses recursive

branches to obtain a cheap multi-context locality-preserving

image representation very early on in the network. In sec-

tions 3.3, 3.4, 4.2.1, we describe our network architecture

in more detail and analyze its various components.

3.1. Classification DCNNs are a bad starting point

Classification DCNNs typically contain a multitude of

interleaved downsampling layers (max-pooling or strided

convolutions) which ultimately squash the image to a 1-

D vector. With GPU memory being the major bottle-

neck for training DCNNs, downsampling layers enable the

exploration of very deep architectures while providing a

natural translational invariance. However, problems arise

when attempting to directly port these networks for Im2Im

regression tasks. Design changes are needed for reten-

tion/recovery of local correspondences, as these get mud-

dled across channels in the middle layers. Recovery with

repeated upsampling is inevitably a lossy process, which is

particularly harmful for regression tasks demanding contin-

uous pixelwise predictions. Alternatively, local correspon-

dences can be retained (e.g. skip layers, hypercolumns) by

merging activation maps from earlier layers at the penulti-

mate layer. The downside to this approach is that activa-

tions from very early layers (which contain the bulk of the

local correspondences) have a poor capability to model non-

linearity, which limits the overall capacity of the network

for modeling localized non-linear transformations. For a

DCNN to be successful as a generic Im2Im regressor, it

would necessarily need to maintain local pixelwise features,

each of which develop strong global representations across

the pipeline while independently preserving local informa-

tion.

3.2. Proposed Approach: RBDN

Figure 2 shows the architecture for our proposed Re-

cursively Branched Deconvolutional Network with three

branches. At a high level, the network first extracts features

at scales 1(max-locality), 1

2
, 1

4
, 1

8
(max-context) and merges

all these activations early on to yield a composite map,

which is then subjected to a series of convolutions (non-

linear transformation) followed by a deconvolution (recon-

struction) to yield the output image. The key feature of

this network is the multi-scale composite map and how it

is efficiently generated using recursive branching and learn-

able upsampling. During training, the network has a broad

locality-context spectrum to work with early on. The series

of convolution layers that follow suit can choose the amount

of context based on the task at hand and apply ample non-

linearity. This translates to a range of modeling capabilities:

anywhere from context-aware regression maps to highly lo-
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Figure 3. Architecture of linear 9-64-3-9 net B0.

Figure 4. Adding the first branch to B0.

calized non-linear transformations (which were difficult to

achieve with previously proposed DCNNs).

Our generic K-branch RBDN network has two ma-

jor components: the main branch B0 (which serves as

the backbone of the network) and the recursive branches

(B1, ..., BK) (which serve as the head of the network).

3.3. The Linear Base Network B0

Inspired by traditional sparse coding approaches, we ap-

proach the Im2Im regression problem with a simple net-

work (denoted by its parameters K-c-T -D) having three

distinct phases:

• Patch Extraction: conv (K x K x c) + max-pooling

• Non-Linear Transform: D conv layers (T x T x c)

• Reconstruction: unpooling(using max-pool locations)

+ deconvolution (K ×K × c)

We use ReLU [45] as the activation function and use

a batch normalization [31] layer after each convolu-

tion/deconvolution. We independently experimented with

values K, c, T,D while performing our relighting experi-

ments and found that increasing K, c, T only yields a mi-

nor improvement, while increasing the network depth D

yielded a significant monotonic improvement until 9 convo-

lution layers, after which performance saturated. Our final

network that yielded the best results is shown in figure 3.

We denote this network as B0 from here on. (We will use it

as the main branch for all RBDN networks).

3.4. Recursive Branches B0, ...BK

While the base network B0 by itself performs well for

relighting, one of its limitations is a very low field of

view. Unlike conventional DCNNs, we cannot add down-

sampling midway since this would corrupt our local corre-

spondences. As a result, we keep B0 and its local corre-

spondences intact and instead add a branch B1 to the net-

work (see figure 4) at the first pooling layer. Within B1,

CONVB11+POOLB1+CONVB12 computes features at half

Figure 5. Defining the recursive branch module BK,N . In the top

half, the box with the thick black border, BK+1,N contains the

recursive branch. The bottom half of the figure shows the base

case (the last branch that does not contain any recursion).

the scale and UNPOOLB1+DECONVB11 provides a learn-

able upsampling. The output of B1 is then merged with B0

at POOL1 itself, which gives the remainder of the network

(which invoke the bulk of non-linearity) access to features

at 2 different scales.

We can generalize B1 to multiple branches B1, ...BK .

In order to do so, we start by defining the recursive branch

module BK,N in figure 5 which corresponds to the Kth

branch in a N -branch network. Note that branch BK+1,N

originates and merges within branch BK,N . The advantage

of such a recursive construction is two-fold:

• Activations from deeper branches would have to be

upsampled many times before merging with the main

branch. The recursive construction helps deeper

branches partially benefit from the learnable upsam-

pling machinery in the shallow branches.

• Aside from the benefit of parameter sharing, the re-

cursive construction forces activations from deeper

branches to traverse a longer path, thus accruing many

ReLU activations. This enables deeper branches to

model more non-linearity, which is beneficial since

they cover a larger field of view and correspond to

global features.

4. Experiments

We train our generic RBDN architecture for three di-

verse tasks: relighting, denoising and colorization. We

train all our models on a Nvidia Titan-X GPU and use

the Caffe [33] deep learning framework. For our denois-

ing/colorization experiments, we augment Caffe with util-

ity layers for noise policies (adding WGN to input with

σ randomly chosen within a user specified range) and im-

age conversions (RGB to YCbCr/Lab space), which stream-

line the training procedure and enable the use of practi-

cally any image dataset out of the box without any pre-

processing. We use ReLU [45] as the activation function

and perform Batch Normalization [31] after every convo-

lution/deconvolution layer in all RBDN models. All our

RBDN models and code are publicly available at https:

//github.com/venkai/RBDN.
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Figure 6. Analysing the effect of learnable upsampling(left) and

recursive branching(right). Error plots on the CMU-MultiPIE [24]

validation set show a positive influence for both learnable upsam-

pling and recursive branching.

Unless otherwise mentioned, we train our RBDN models

with the mean square error (MSE) as the loss function, crop

size of 128 (chosen randomly from the full-sized training

images without any resizing), learning rate of 1e-7, mini-

batch size of 64, step-size of 100000 and train our model

for 500000 iterations using Stochastic Gradient Descent [6]

(SGD) with momentum and weight decay. During infer-

ence, the network by virtue of being fully convolutional

can handle variable sized inputs. Inference takes ∼1s on

a 320x480 image. Training takes ∼1 day for relighting and
∼2 weeks each for colorization/denoising.

4.1. Training Datasets

CMU-MultiPIE [24]: Face images of 337 subjects are

recorded over 4 sessions. Within a session, there are face

images of each subject exhibiting 13 pose x 19 illumination

x 2-3 expression variations. We used images of 208 subjects

which did not appear in all sessions for training our relight-

ing RBDN, and images of 64 other subjects for validation.

ImageNet ILSVRC2012 [48]: 1.2 million training im-

ages and 150, 000 images each for validation and test.

MS-COCO [40]: 80, 000 training images and 40, 000
images each for validation and test.

For training both our denoising/colorization RBDN, we

fuse the train/validation sets of both ImageNet and MS-

COCO (total of 1.47 million training images).

4.2. Face Relighting

We train our relighting RBDN on 20786 images from

CMU-MultiPIE, which takes as input a frontal face image

with varying illumination and outputs the image with only

ambient lighting. We used a crop size of 224, step-size of

12000 and trained our model for 40000 iterations.

4.2.1 Analysis of RBDN

Compared to the base network B0, a K-branch RBDN has

two major additions: the recursive branching and learnable

Figure 7. Relighting RBDN results for a subject from the CMU-

MultiPIE [24] validation set. Top Row: Input images (ground

truth is top-left image). 2nd row: B0 output (no branches; strong

artifacts can be seen.) 3rd-6th row: RBDN outputs for 1, 2, 3, 4
branches respectively. Results improve with increase in number

of branches up to 3 branches. The network starts overfitting at 4
branches.

upsampling. We perform two sets of relighting experiments

to independently observe the efficacy of both on a K-branch

RBDN(K = 0, 1, 2, 3, 4) as follows:

• We removed the CONCAT layers which merge the dif-

ferent branches. This resulted in a linear network (BK

only) similar in structure to the deconvolutional net-

works used for semantic segmentation [46, 4].

• We replaced the learnable upsampling with fixed bilin-

ear upsampling.

Figure 6 shows the error plots of log reconstruction error on

the CMU-MultiPIE [24] validation set vs training iterations

for both experiments. The plots show that both learnable

upsampling and recursive branching independently have a

positive impact on performance.

4.3. Denoising

We train a single 3-branch RBDN model for denoising

which takes as input a grayscale image corrupted by ad-

ditive WGN with standard deviation uniformly randomly

chosen in the range σ ∈ [8, 50]. We use the same evalu-

ation protocol as [52], with a 300 image test set (all 100
images of the BSD300 [3] test set and 200 images from

PASCAL VOC2012 [21] dataset). Precomputed noisy test

images from [52] are used to compare all approaches for a

fair realistic evaluation.

4.4. Colorization

We first transform a color image into YCbCr color space

and predict the chroma (Cb,Cr) channels from the lumi-

nance (Y-channel) input using RBDN. The input Y-channel
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Figure 8. Relighting results on test sets. The goal is to render faces from various unknown lighting conditions to a fixed lighting condition.

Odd rows: Inputs, Even Rows: 3-branch RBDN output. Note that the model is trained exclusively on frontal face images with constrained

illumination variations from CMU-MultiPie [24], but still generalizes reasonably well to unconstrained face images in Janus-CS0 [36]

under a variety of poses, illuminations, expressions, occlusions, affordances (hats, glasses, etc.)

.

Test σ 10 15 20 25 30 35 40 45 50 55 60

ClusteringSR [19] 33.27 30.97 29.41 28.22 27.25 26.30 25.56 24.89 24.28 23.72 23.21

EPLL [65] 33.32 31.06 29.52 28.34 27.36 26.52 25.76 25.08 24.44 23.84 23.27

BM3D [16] 33.38 31.09 29.53 28.36 27.42 26.64 25.92 25.19 24.63 24.11 23.62

NL-Bayes [39] 33.46 31.11 29.63 28.41 27.42 26.57 25.76 25.05 24.39 23.77 23.18

NCSR [20] 33.45 31.20 29.56 28.39 27.45 26.32 25.59 24.94 24.35 23.85 23.38

WNNM [25] 33.57 31.28 29.70 28.50 27.51 26.67 25.92 25.22 24.60 24.01 23.45

TRD [13] - 31.28 - 28.56 - - - - - - -

MLP [7] 33.43 - - 28.68 - 27.13 - - 25.33 - -

DCGRF [52] 33.56 31.35 29.84 28.67 27.80 27.08 26.44 25.88 25.38 24.90 24.45

DnCNN [59] 33.32 31.29 29.84 28.68 27.70 26.84 26.05 25.34 24.68 24.05 23.39

3-branch RBDN 32.85 31.05 29.76 28.77 27.97 27.31 26.73 26.24 25.80 25.22 23.25

Table 1. Mean PSNR for various denoising approaches on 300 test images. A single denoising model is used to report all results for RBDN

(trained on σ ∈ [8, 50]) and DnCNN [59] (trained on σ ∈ [0, 55]). For other comparison approaches, note that the best performing model

at each noise level is used to report results.

is then combined with the predicted Cb,Cr channels and

converted back to RGB to yield the predicted color image.

We denote this model as RBDN-YCbCr.

Inspired by the recently proposed Colorful Coloriza-

tions [63] approach, we train another RBDN model which

takes as input the L-channel of a color image in Lab space

and tries to predict a 313-dimensional vector of probabil-

ities for each pixel (corresponding to 313 ab pairs result-

ing from quantizing the ab-space with a grid-size of 10).

Subsequently, the problem is treated as multinomial clas-

sification and we use a softmax-cross-entropy loss with

class re-balancing as in [63]. Instead of SGD, we use the

Adam [35] solver for training, with a learning rate of 3.16e-

3 (γ = 0.316), step-size of 45000, mini-batch size of 128
and train our model for 200000 iterations. During infer-

ence, we use the annealed-mean of the softmax distribution

to obtain the predicted ab-channels as in [63]. We denote

this model as RBDN-Lab.

5. Results

Relighting: Figure 7 shows the RBDN outputs with

0, 1, 2, 3, 4 branches for a subject from the CMU-MultiPIE

validation set. The improvement in results from B0 (no

branches) to 1-branch RBDN is very prominent, after which

there is a gradual improvement with increase in number of

branches up to 3. Results deteriorate when transitioning to

a 4-branch RBDN (possibly due to overfitting on the rela-

tively small dataset). We qualitatively evaluate our results

(figure 8) on the test-sets of CMU-MultiPIE and Janus-

CS0 [36] for the 3-branch RBDN. While RBDN achieves

near perfect relighting on CMU-MultiPIE, it surprisingly

generalizes well (without any finetuning) to unconstrained

images in Janus-CS0.
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Figure 9. Visual comparison of various denoising approaches on a test image from BSD300 with WGN of σ = 50.

Figure 10. Illustrating the capability of a single RBDN model to handle a range of noise levels(yellow box). Top Row: Noisy test image

(PSNR in red box). Bottom Row: Denoised result with 3−branch RBDN (PSNR in green box)

Denoising: Table 1 shows the mean PSNR for various

denoising approaches on the 300 benchmark test images.

Besides RBDN, DnCNN [59] and DCGRF [52], all other

approaches train a separate model for each noise level. For

DCGRF [52], results are reported with a low noise model

for test σ ≤ 25 and a high noise model for test σ ≥ 30.

The results for both DnCNN [59] and our 3-branch RBDN

however correspond to a single model trained to automat-

ically handle all noise levels. Our model outperforms all

the other approaches at test noise σ ∈ [25, 55]. Figure 9

shows a visual comparison of various denoising approaches

for a test image from BSD300. Figure 10 highlights a sin-

gle RBDN model’s denoising capability across a range of

noise levels. Figure 11 illustrates the generalization ability

of the RBDN to reliably denoise at a very high noise level of

σ = 55 (which is outside the bounds of our training). The

fact that our 9-layer RBDN (without any residual connec-

tions [28]) outperforms the 18-layer residual DnCNN [59],

suggests that cheap early recursive branching is more bene-

ficial than added depth.

Colorization: Figure 12 shows the colorizations of var-

ious models on the MS-COCO test set. The 3, 4-branch

RBDN-YCbCr models produce decent colorizations, but

are very dull and highly under-saturated. This is how-

ever not an architectural limitation, but rather the MSE loss

function which tends to push results towards the average.

Colorization is inherently ambiguous for a large majority

of objects such as cars, people, animals, doors, utensils,

etc., several of which can take on a wide range of per-

missible colors. On the other hand, the MSE based mod-

els are able to reasonably color grass, sky, water as these

typically take on a fixed range of colors. Softmax cross-

entropy loss based models with class rebalancing ([63] and

the 4-branch RBDN-Lab) are able to overcome the under-

saturation problem by posing the problem as a classification

task and forcibly pushing results away from the average.

Finally, the only difference between the 4-branch RBDN-

Lab and the linear dilated convolutional network of [63] is

the architecture. Both models give very good colorizations,

with one appearing better than the other for certain images

and vice-versa, although the colorizations of RBDN-Lab

have a higher saturation and appear slightly more colorful

for all images.

6. Conclusion and Future Work

We presented a DCNN architecture for Im2Im regres-

sion: RBDN, which gives competitive results on 3 diverse

tasks: relighting, denoising and colorization, when used

off-the-shelf without any task-specific architectural modi-

fications. The key feature of RBDN is the development

of a cheap multi-context image representation early on in
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Figure 11. Illustrating RBDN’s ability to reliably denoise at σ = 55, outside our training bounds (σ ∈ [8, 50]). The 18-layer DnCNN [59]

(despite using σ = 55 for training) is outperformed by our 9-layer RBDN. Red, Yellow, Green boxes show the PSNR.

Figure 12. Colorization results for images from MS-COCO test set. (Please see supplementary for more comparisons)

the network, by means of recursive branching and learnable

upsampling, which alleviates the locality-context trade-off

concerns inherent in the design of Im2Im DCNNs.

We believe that several improvements can be made to the

RBDN architecture. First, the RBDN architecture could po-

tentially benefit from residual connections, dilated convolu-

tions and possibly other activation functions besides ReLU.

Secondly, we used a network of fixed depth across all tasks,

which may prove insufficient for complex tasks or subop-

timal for simple tasks. The recently proposed Structured

Sparsity approach [56] allows networks to simultaneously

optimize their hyperparameters (filter size, depth, local con-

nectivity) in a highly efficient way while training by means

of Group Lasso [58] regularization. Thirdly, MSE is known

to be an extremely poor [34] loss function for tasks de-

manding perceptually pleasing image outputs. While the

loss function from [63] we used for colorization overcame

MSE’s limitations, it is specific to the colorization problem.

Loss functions based on Adversarial Networks [23] on the

other hand can be a generic MSE replacement.
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