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Abstract

The Gromov-Hausdorff (GH) distance is traditionally

used for measuring distances between metric spaces. It

was adapted for non-rigid shape comparison and match-

ing of isometric surfaces, and is defined as the minimal

distortion of embedding one surface into the other, while

the optimal correspondence can be described as the map

that minimizes this distortion. Solving such a minimiza-

tion is a hard combinatorial problem that requires pre-

computation and storing of all pairwise geodesic distances

for the matched surfaces. A popular way for compact repre-

sentation of functions on surfaces is by projecting them into

the leading eigenfunctions of the Laplace-Beltrami Opera-

tor (LBO). When truncated, the basis of the LBO is known

to be the optimal for representing functions with bounded

gradient in a min-max sense. Methods such as Spectral-

GMDS exploit this idea to simplify and efficiently approxi-

mate a minimization related to the GH distance by operat-

ing in the truncated spectral domain, and obtain state of the

art results for matching of nearly isometric shapes. How-

ever, when considering only a specific set of functions on

the surface, such as geodesic distances, an optimized basis

could be considered as an even better alternative. More-

over, current simplifications of approximating the GH dis-

tance introduce errors due to low rank approximations and

relaxations of the permutation matrices.

Here, we define the geodesic distance basis, which is op-

timal for compact approximation of geodesic distances, in

terms of Frobenius norm. We use the suggested basis to ex-

tract the Geodesic Distance Descriptor (GDD), which en-

codes the geodesic distances information as a linear com-

bination of the basis functions. We then show how these

ideas can be used to efficiently and accurately approximate

the metric spaces matching problem with almost no loss of

information. We incorporate recent methods for efficient

approximation of the proposed basis and descriptor with-

out actually computing and storing all geodesic distances.

These observations are used to construct a very simple and

efficient procedure for shape correspondence. Experimen-

tal results show that the GDD improves both accuracy and

efficiency of state of the art shape matching procedures.

1. Introduction

One line of thought in shape analysis considers an ob-

ject as a metric space, and object matching, classification,

and comparison as the operation of measuring the discrep-

ancies and similarities between such metric spaces, see, for

example, [13, 33, 27, 23, 8, 3, 24].

Although theoretically appealing, the computation of

distances between metric spaces poses complexity chal-

lenges as far as direct computation and memory require-

ments are involved. As a remedy, alternative representa-

tion spaces were proposed [26, 22, 15, 10, 31, 30, 19, 20].

The question of which representation to use in order to best

represent the metric space that define each form we deal

with, and yet allow for an accurate representation of the

mapping from one metric space to another occupied the

attention of some recent efforts, see for example [2] and

[1]. Indeed, some compact spaces, in the case of matching

metric spaces, allow to reduce the complexity and conse-

quently improve the accuracy of the resulting correspon-

dence maps between surfaces. For example, the Spectral

generalized multidimensional scaling (SGMDS) [3], func-

tional maps (FMaps) [26], and the Iterative Closest Spectral

Kernel Maps (ICSKM) [30] all try to find a linear mapping

in a dual space that encodes the minimal distance distor-

tion mapping between two shapes. ICSKM extends the idea

of FMaps by finding the best alignment between the spec-

tral kernels of the shapes using iterative closest point (ICP).

There, each pair of points produces a constraint, such that

much more information is used in the ICP alignment step.

ICSKM is initialized using Spectral Gradient fields (SGF)

[31], where the normal field of the shape is incorporated,

so that some intrinsic symmetries can be identified and re-

solved.

By trying to match geodesic distances, the SGMDS effi-

cient procedure provides accurate correspondence maps be-

tween nearly isometric shapes. Nevertheless, casting the

Gromov-Hausdorff related minimization as is into the spec-

tral domain forces a low rank representation of a relaxed
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version of the permutation matrix that encodes the corre-

spondence and introduces errors.

When considering the set of all gradient bounded func-

tions on a given manifold, it can be shown that the eigen-

functions of the Laplace-Beltrami operator (LBO) provide

an optimal and unique, in a min-max sense, representation

for truncated bases [2]. Although not explicitly acknowl-

edged at the time, it motivated its usage in shape match-

ing methods like the SGMDS and functional maps. When

dealing with a smaller subset of these functions, such as

geodesic distances, there could be a basis that would pro-

vide a better representation. We introduce the geodesic dis-

tance basis for optimal representation of geodesic distances.

We then construct the Geodesic Distance Descriptor (GDD)

which encodes the geodesic distances information as a lin-

ear combination of the basis functions. The GDD can be

seen as a canonical form without the metrication error. It

is shown that an approximated metric space matching min-

imization can be reduced to comparing the GDD of the

shapes using ICP procedures [6], [11], without truncation

or relaxation. The result is an accurate correspondence per-

mutation matrix. The new linear formulation significantly

improves the computational complexity required to solve

the shape matching problem. Moreover, when casting the

problem on the truncated geodesic distance basis, almost

no information is lost. As a stand-alone method, GDD out-

performs both SGMDS and functional maps in accuracy,

efficiency, and simplicity. When combined with any of the

state of the art methods, superior results are obtained.

In Section 2 we define the Gromov-Hausdorff distance

and its use for shape correspondence. In Section 3 we

define the optimal basis for geodesic distance representa-

tion, and relate it to the LBO basis. Next, Section 4 deals

with efficiently approximating the geodesic distance basis

without actually computing all pairwise geodesic distances.

The induced geodesic distance descriptor is defined in Sec-

tion 5, where we show how it can be used to approxi-

mate the solution of the metric space matching minimiza-

tion problem. In Section 6 we discuss a few initialization

and post-processing alternatives to our final shape corre-

spondence procedure that provides state-of-the-art results

and presented in Section 7.

2. The Gromov-Hausdorff Distance

Given two shapes S1 and S2, consider the map that best

preserves the inter-geodesic distances while embedding one

shape into the other. The Gromov-Hausdorff (GH) distance

is defined as the distortion of that embedding. Let, d1(s, s
′)

and d2(q, q
′) represent the inter-geodesic distances between

s, s′ ∈ S1 and q, q′ ∈ S2, respectively. The GH distance is

defined as

dGH(S1,S2) =
1

2
min
C

max
(s,q)∈C,(s′,q′)∈C

∣

∣d1(s, s
′)−d2(q, q

′)
∣

∣

(1)

where

∀s ∈ S1 ∃q ∈ S2 s.t. (s, q) ∈ C, (2)

and

∀q ∈ S2 ∃s ∈ S1 s.t. (s, q) ∈ C. (3)

The set of corresponding points is represented by C. The

set C could be defined through an indicator function p(s, q)
such that p(s, q) = 1 if (s, q) ∈ C and p(s, q) = 0 for

(s, q) /∈ C. In practice, we detect correspondences between

well sampled manifolds, for which we can re-write the op-

timization problem in matrix notation that reads

argmin
P∈π(n)

‖PD1P
T −D2‖∞, (4)

where π(n) is the set of n × n permutation ma-

trices, and P,D1, D2 are the discretizations of

p(s, q), d1(s, s
′), d2(q, q

′).
Several variations were proposed to reduce the complex-

ity of the problem [8], [9], [21], [25]. In the Generalized

Multi-Dimensional Scaling (GMDS) [8], the L∞ Hausdorff

distance was replaced by an L2 norm.

SGMDS [3] further simplifies this minimization by re-

laxing the permutation matrix P and reformulating it as

argmin
P

‖PA1D1 −D2A2P‖S1,S2

s.t.

PA1✶ = ✶

PTA2✶ = ✶ (5)

where ‖F‖S1,S2
= trace(FTA2FA1), and A1, A2 hold the

infinitesimal areas about each sample point of S1,S2 along

their diagonals. Then, in order to be able to solve this min-

imization in a practical computational complexity, P , D1

and D2 are represented in the truncated spectral domain of

the LBO, such that only the first k eigenfunctions are con-

sidered. The number of variables in the simplified SGMDS

minimization is quadratic in the number of eigenfunctions,

so the optimization becomes relatively slow when consider-

ing more then k = 20− 30 eigenfunctions. In addition, us-

ing only k eigenfunctions to represent the permutation ma-

trix P forces it to be represented as a k-rank matrix, which

introduces significant errors to the minimization.

In the following sections of this paper, we will propose

an alternative to 4 that does not require any relaxation or

truncation of P , while allowing much more eigenfunctions

to be incorporated. In addition, we will work with a basis

that is optimized for geodesic distance representation, for

which truncating the eigenspace almost does not affect the

solution.
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3. Geodesic Distances Basis

The set of eigenfunctions of the Laplace-Beltrami opera-

tor of some manifold M form a basis, which generalizes the

Fourier basis to surfaces and is widely used for representa-

tion of functions on manifolds. When considering the set of

all gradient bounded functions on M, the LBO eigenfunc-

tions is the best basis for a truncated representation of this

set in a min-max sense [2]. These eigenfunctions were used

for a truncated representation of descriptors, permutation

functions [26], and geodesic distance functions [3]. How-

ever, when considering a subset of these functions, such

as geodesic distances, an optimized basis could provide an

even better representation. In this section, we define the

Geodesic Distance Basis and show its usefulness for com-

pactly representing geodesic distance functions. For sim-

plicity, we limit our discussion to the discrete domain with

the standard inner product, assuming the shapes were sam-

pled uniformly. All definitions and derivations could be eas-

ily extended to the more general case of non-uniform sam-

pling.

Assume we are given a shape S with n vertices, sam-

pled from a smooth manifold. Let the n × n symmetric

matrix D hold all geodesic distances of S , such that Dij

holds the geodesic distance between i, j ∈ S . Denote by

D = QΛQT the eigenvalue decomposition of D, where

the columns of Q are orthonormal and Λ is a real diagonal

matrix. Assume that the set of columns of Q are ordered

by the magnitude of their corresponding eigenvectors, in a

descending order. The k-truncated eigenvalue decomposi-

tion of D is defined by D̂Q = QkΛkQ
T
k , where Λk holds

the k first eigenvalues along its diagonal and Qk holds the

first k corresponding eigenvectors. In general, it is known

that the best k-rank approximation of a matrix, in terms of

Frobenius norm, is given by computing its k-truncated sin-

gular value decomposition [32]. For symmetric matrices, it

is equivalent to the k-truncated eigenvalue decomposition.

This can be formulated as

D̂Q = argmin
D̂∈K(n)

‖D − D̂‖F , (6)

where K(n) is the space of n× n matrices with rank k.

We term the set of columns of Q as the basis of geodesic

distances of the shape S . Notice that D̂Q = QkQ
T
kD. Let

the matrix Bk hold k vectors of some other basis. The trun-

cated representation of D in the new basis is obtained by

D̂B = BkB
T
k D, where BT

k D are the coefficients of repre-

sentation. The rank of D̂B is at most k as a product of n×k
matrices. Hence, it cannot approximate D better than D̂Q.

In other words, the truncated reconstruction of D using the

geodesic distance basis has the lowest approximation error,

in terms of Frobenius norm, among all other bases, inde-

pendent of the number of vertices n.

The computation of Q is actually not practical when

dealing with more than a few thousand points. However,

it can be efficiently approximated. In the next section we

discuss on how to compute an approximation to Q. In Fig-

ure 1 we compare the truncated reconstruction error of the

geodesic distances obtained using the basis of the LBO to

that of the proposed Geodesic Distance Basis. Here, we

computed Q on the Wolf shape from TOSCA, which is the

only shape with less then ten thousand vertices. It can be

seen that the proposed basis supplies a compact representa-

tion with a much better reconstruction.

Figure 1. Left - Comparing the reconstruction errors ‖D − D̂‖F ,

where D̂ is obtain using the basis of the LBO (LBO), the suggested

optimal basis Q (GDB), and its approximation Q̃ (GDB-app). The

right image is a zoom of the left one.

4. Computing the basis

In order to compute Q and Λ, one would have to compute

all pairwise geodesic distances in the large n×n matrix D,

and then perform eigenvalue decomposition to obtain the

largest magnitude k eigenvalues and corresponding eigen-

vectors. The task of computing all pairwise geodesic dis-

tances is time consuming and impractical when dealing with

more than a few thousand points, even when using efficient

methods such as Fast Marching [18]. In SGMDS, Spectral-

MDS (SMDS) [4] was adopted for an efficient computa-

tion of D. There, the geodesic distances were computed

between roughly 2000 samples of the shape, and the rest of

the distances were interpolated by minimizing a derichlet

energy term while working in the truncated spectral domain

of the LBO. The geodesic distances were computed using

fast marching and the samples were chosen using the Far-

thest Point Sampling procedure [16].

Recently, an alternative efficient implementation to Mul-

tidimentional Scaling (MDS) was suggested in [28, 29].

There, geodesic distances were interpolated from a few

of them, similar to SMDS, and with the same complex-

ity. However, no truncated representation in any basis was

used, avoiding the errors caused by the truncation, and sig-

nificantly increasing the accuracy of the approximation. It

was shown that only p = 100 samples were enough to

reconstruct the geodesic distances up to negligible errors.

Eventually, the approximation to the pairwise geodesic dis-

6412



tances matrix was written as a product of smaller matrices

Sn×kTk×kS
T
n×k, where k is half the size of the number of

samples p.

Here, we adopt this idea to compute an approximation

to the k first basis functions of the geodesic distance basis.

Assume we have a decomposition D̂Q̃ = STST , obtained

from [28], that well approximates D, where S is an n × k
matrix and T is a k × k matrix. Denote by QR the QR

factorization of S, where Q is orthonormal and R is upper

triangular. Denote by V Λ̃V T the eigenvalue decomposi-

tion of RTRT . Define Q̃ = QV . Then, we have obtained

D̂Q̃ = Q̃Λ̃Q̃T . Moreover, Q̃Λ̃Q̃T is the k truncated eigen-

value decomposition of D̂Q̃, since Λ̃ is diagonal and Q̃ is

orthonormal as a product of orthonormal matrices. Finally,

notice that D̂Q̃ is the reconstruction of D using the approx-

imated basis is Q̃.

Next, we measure how well Q̃ approximates the

geodesic distances basis Q by comparing the reconstruc-

tions D̂Q̃ and D̂Q. Figure 1 demonstrates that Q̃ can be used

instead of the optimal basis Q with almost no effect on D̂Q.

Note that the above procedure supplies us the approximated

basis Q̃ and the coefficients Λ̃ without the need to compute

or store the entire matrix D, but only up to p = 2k columns

of it for computing S and T with the method from [28]. The

geodesic basis vectors are no more than linear combinations

of geodesic distances computed on the surface. In Figure 2

we vizualize the first 10 basis vectors (columns of Q̃) on the

Cat shape from TOSCA dataset.

Figure 2. The first 10 eigenvectors of the basis.

5. Geodesic descriptors

Denote by the diagonal matrix W the square root of the

diagonal matrix Λ, such that

Wii =
√

Λii. (7)

Define

X = QW, (8)

such that,

D = XXT . (9)

We term X as the Geodesic Distance Descriptor (GDD).

Note, that in general X is complex. X can be used as a

point descriptor that encodes the geodesic distances. Since

it stems from geodesic distances, it is not affected by iso-

metric deformations of the shape. X holds all information

of the geodesic distances D, and therefore could be used

instead of D to find the solution for 4. Moreover, X is al-

ready represented in the basis Q since QQTX = X , so

only a few columns of X contain almost all information en-

capsulated in D. This was demonstrated in Figure 1 by the

reconstruction error of D as a function of number of eigen-

vectors. The GDD can be therefore used for dimensionality

reduction and simplification tasks that involve geodesic dis-

tances. In a sense, the GDD can be thought of a canonical

form obtained using Multidimensional scaling [7], but with-

out the embedding errors that occur because of flattening a

curved surface.

Each point i in the shape corresponds to a row xi in X .

xi can be referred to as the descriptor of point i. The de-

scriptor of a point i is invariant to vertex ordering of rest of

the points. Hence, the GDD can be used as a point descrip-

tor to find the correspondence between two shapes. Denote

by Eij = ‖xi − xj‖2 the Euclidean distance between the

descriptors of points i and j. Figure 3 shows the relation

between Eij and the geodesic distance Dij . For compari-

son, we show the same analysis for Φ instead of X , where

Φ holds the eigenvectors of the LBO. The upper cat shapes

in Figure 4 visualize Ei(j) for a selected vertex i marked in

red, for both X and Φ. It seems that the geodesic descrip-

Figure 3. Eij w.r.t Dij . The left figure corresponds to X , and the

right one corresponds to Φ.

tors have monotonic relation with the geodesic distances,

and thus more robust to large correspondence errors.

Figure 4. The cats display the function Ei(j) derived from X

(left) and Φ (right), for a selected point i marked in red.
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An alternative formulation

Note that the eigenvalue decomposition has ambiguities.

When assuming no repeating eigenvalues, the eigenvectors

in an eigenvalue decomposition are unique up to sign flips.

This can be formulated as Q = Q0C, where C is a diago-

nal sign matrix, and Q0 and Q are two possible eigenvectors

matrices. More generally, C is an orthogonal matrix, rep-

resenting rotation ambiguities that correspond to repeating

eigenvalues. In any case, the non-diagonal elements of C
correspond to the locations of the repeating eigenvalues on

the diagonal of W . It is therefore possible to swap between

C and W , such that

X = QW = Q0CW = Q0WC = X0C, (10)

where X0 and X are two possible derived GGD-s. There-

fore, the proposed geodesic distance descriptor is invariant

to isometric deformations up to a rotation and reflection am-

biguity XC.

Consider two isometric shapes with corresponding de-

scriptors X1 and X2, and some correspondence encoded

by the permutation matrix P . Plugging D1 = X1X
T
1 and

D2 = X2X
T
2 in 4, we obtain

argmin
P∈π(n)

‖PX1X
T
1 P

T −X2X
T
2 ‖∞. (11)

It appears that this minimization can be reduced to solving

argmin
P∈π(n),C∈O(n)

‖PX1C −X2‖2,∞, (12)

where ‖F‖2,∞ stands for the maximal L2 norm of any row

in F , and O(n) is the set of n× n orthogonal matrices. For

isometric shapes, the two minimizations are equivalent. For

nearly isometric shapes, the solution of 12 approximates the

the one of 4, up to some bound. If we manage to find a good

solution to 12, it guaranties some bound on the minimizer

of 4. More details regarding the bounds can be found in the

supplamentary material. In other words, solving the com-

plex GH related minimization in 4 is nothing but matching

the geodesic descriptors of two shapes, under the best rota-

tion.

The minimization in 12 can be efficiently solved using

methods like Iterative Closest Point (ICP), with a quasi-

linear complexity in the number of points, using efficient

approximations such as kd-tree. Moreover, since X1 and

X2 are already represented in the geodesic distance basis,

it is enough to consider only their few k first columns, with

almost no effect on the solution. In our experiments, k = 50
were enough for this task. Note that ICP finds for each ver-

tex in one shape a matching vertex in the other shape, rather

then a bijective map. However, this makes more sense when

dealing with two discrete shapes that might have been sam-

pled differently from their corresponding manifolds.

6. Initializations and post processing

Suppose we treat the descriptors X1 and X2 as two point

clouds, where each row is a point, and the orthogonal matrix

C is a rotation and reflection of the points. ICP ([6], [11]) is

an efficient optimization that attempts to compute the best

match between two point clouds, under any rotation and re-

flection. In practice, ICP iterates between point match and

rotation alignment:

1. For each point in the first could, find its nearest point

in the second cloud, in terms of Euclidean distance.

2. Find the rotation and reflection that best aligns the

matched points. This step has a closed form by using

the Procrustes Theorem [14].

We suggest to find the solution of 12 by applying ICP to

X1 and X2. ICP usually requires a good initialization. We

propose the following alternatives.

Initialization using correspondence

Assume we have some initial correspondence given as

an output from another shape matching procedure. Plug-

ging this initialization, it is possible to start with step 2 of

ICP, and continue to iterate. In our experiments, we used

correspondences found by other methods as initializations,

and managed to outperform any state of the art method.

Initialization using descriptors

An alternative way is to start with some initial estimate

of C, denoted here as C0. In functional maps, ICP between

the eigenfunctions of the LBO was performed as a post pro-

cessing step, while computing the initialization C0 was the

core of the method. First, different descriptors were com-

puted for each of the shapes. Then, C0 was treated as a

linear map between the coefficients of the descriptors in the

LBO basis, and obtained using a simple least-squares mini-

mization. At first sight, translating these steps to our prob-

lem is direct - compute C0 using the coefficient of the de-

scriptors in the basis of geodesic distances Q instead of the

LBO basis, and proceed similarly. However, unlike func-

tional maps, in our case the matrix C encodes the defor-

mation between the descriptors X1 and X2 which are not

orthonormal bases (the columns are orthogonal but not nor-

malized). To that end, suppose that f1 and f2 are column

vectors corresponding to some point descriptors on shapes

S1 and S2. The orthogonal permutation matrix P encodes a

mapping between the shapes and can be therefore used for

denoting f2 = Pf1. Since P is orthogonal we can write

instead PT f2 = f1 or fT
2 P = fT

1 . Denote by F1 and F2

the coefficients of f1 and f2 in the geodesic distance basis

representation, i.e, F1 = QT
1 f1 and F2 = QT

2 f2. Suppose

that we seek for some matrix C that encodes the relation
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between PX1 and X2 as

PX1C = X2. (13)

By multiplying both sides of the equation by fT
2 we obtain

fT
2 PX1C = fT

2 X2. (14)

Notice that

fT
2 PX1 = fT

1 X1 = fT
1 Q1W1 = FT

1 W1. (15)

Hence, Equation 14 can be further reduced to

FT
1 W1C = FT

2 W2. (16)

Then, we could instead search for C that encodes the rela-

tion between FT
1 W1 and FT

2 W2, which is independent of

the mapping P . This can be defined as the minimization

argmin
C

‖FT
1 W1C − FT

2 W2‖. (17)

In other words, we propose to find an approximation to C
by repeating the procedure of functional maps, while us-

ing the basis Q instead of the LBO basis, and multiplying

the coefficients of the descriptors by the square-root of the

eigenvalues, W .

Initialization using feature points

Assume we have an initial set of m points in shape S1

that correspond to m points in shape S2. To find the initial

m point correspondence, for example, in SGMDS it was

suggested to first find in each shape a set of points that are

locally farthest from the rest of the points, and then match

the candidates using descriptors such as WKS [5]. It was

noted that m = 5 points were enough for a good initializa-

tion of SGMDS.

m point correspondences can be considered as m rows

in X1 that correspond to m rows in X2. Denote the sub-

matrices that correspond to these rows by X̂1 and X̂2. As-

sume that the columns of X1 and X2 are ordered by the size

of their corresponding eigenvalues, in a descending order.

For isometric shapes, assuming non repeating eigenval-

ues, C would be a diagonal matrix. If the shapes are approx-

imately isometric, C would have a sparse and diagonally

dominant structure. This effect was already demonstrated

in functional maps. Hence, it is possible to estimate C by

solving

argmin
C∈U(n)

‖X̂1C − X̂2‖, (18)

while adding some off-diagonal penalty. In fact, it is enough

to estimate only the first rows and columns of C, and then

obtain an initial correspondence using only the first cor-

responding columns of X1 and X2. In our experimental

setting, we used the same m = 5 point correspondences

that were used in SGMDS, with which we approximated

the 20× 20 first rows and columns of C.

Post Processing

The correspondence obtained using minimization 12 is

robust to large geodesic distances errors, since they would

penalize the objective function. This was demonstrated ear-

lier by showing that the GDD has a point signature that is

unique to the point (Figures 3 and 4). Other bases or de-

scriptors, however, could produce a signature with a more

local nature. These descriptors can further improve the so-

lution by combining them with the GDD. One simple way

used in our experimental results is to refine the correspon-

dence by performing ICP on the LBO basis, initialized with

the correspondence obtained by our method. As this basis

appears to be better localizer than the GDD, superior results

are obtained for correspondence when combining the two.

However, note that while the correspondence improves, this

post-processing harms the approximation of the minimizer

of 4 (see experimental results). This is not surprising as the

GDD is related to the minimization of 4.

7. Results

Throughout this section, we refer to our proposed

method as the Geodesic Distance Descriptor (GDD), and

compare it to methods discussed in the introduction and

throughout the paper. In our experiments we used shapes

from the publicly available datasets TOSCA [9] and SCAPE

[12] that contain real and synthetic human and animal

poses. For accuracy comparison of shape correspondence

we use the evaluation procedure proposed by Kim et al.

[17]. To the best of our knowledge, the state of the art meth-

ods for efficiently computing correspondences of nearly

isometric shapes are Spectral-GMDS [3], functional maps

[26], and Spectral-GF with ICSKM refinement [31, 30]. For

GDD, we used k = 50 basis functions computed from 100
samples in each surface.

In our first experiment, given two shapes, we com-

puted their point correspondence by applying ICP to their

geodesic descriptors, using the same 5 points initializa-

tions used for SGMDS. This was done with and without

the post-processing step suggested in section 6 (GDD+post

and GDD-5pt). We compared the results to functional maps

(FMaps), SGMDS and Spectral-GF (SGF). We repeated the

same experiment using the LBO basis instead of the X (Phi-

5pt). The results are shown in Figure 5. It can be seen that

GDD performs better than FMaps with a much simpler ini-

tialization, without the need of the descriptors. Compared

to SGMDS, It can be seen that GDD performs better for

the same initialization and with a much simpler procedure,

without the spectral formulation for the optimization of the

GH related minimization. In addition, our procedure re-

quired computing much less geodesic distances than SG-

MDS (see Section 4, and Figure 6). The performance of

SGF is better than GDD when comparing large geodesic er-
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Figure 5. Quantitative evaluation of shape correspondence meth-

ods applied to the shapes from the TOSCA and SCAPE datasets,

using the protocol from Kim et al.

rors, probably because the initialization step of SGF is more

sophisticated and incorporates more information about the

shape, such as the normal vector at each point. A better

initialization for GDD can significantly improve the results,

see Figure 9.

Next, Figure 6 presents the computation time of the

GDD, SGMDS, FMaps and the SGF methods applied to

four shapes from the TOSCA database with different num-

bers of vertices. The computations were evaluated on a 2.8
GHz i7 Intel computer with 16GB RAM. In this experiment,

the evaluated GDD is the same as that used for the results

in figures 5, 7 and 8, as a stand-alone method, including

all initialization techniques. In practice, the post processing

step for the GDD should not add time as it is done by sim-

ply replacing the GDD with the eigen-functions of the LBO

within the ICP iterations.

In the benchmark of Kim et al. the correspondence be-

tween shapes is assumed to be provided. The geodesic dis-

tance of each point mapped by the method we evaluate from

what is referred to as true location is computed. The distor-

tion curves describe the relative number of points falling

within a relative geodesic distance from what is assumed to

be their exact location. Notice that the given “exact” loca-

tion is, in fact, a subjective measure. The distortion curves

contain an intrinsic ambiguity of up to about 25% as there

is no exact isometry between objects at different poses.

In the next experiment, we compute the correspondence

P as

min
P

‖PD1P
T −D2‖

2
F . (19)

Since we cannot really compute all pairwise geodesic dis-

tances, we evaluated the result by considering only 1000
randomly sampled rows and columns of the matrix inside

the above norm. We state the results in Figure 7. GDD and

Post stand for GDD-5pt and GDD+post were discussed in

the previous experiment. It can been seen that the proposed

GDD performs best as a method for approximating the min-

imizer of 19. Note that the post processing step damages

the approximation, since it involves the LBO basis for the

sake of localizing the correspondence. Surprisingly, GDD

approximates 19 even better than the “ground truth” corre-

# of vertices 4344 19248 27894 52565

Spectral-GMDS

5% G-Distances 28.6 476.1 998.3 4981.2

100 LBO eigs 1.8 5.5 9.7 22.9

SGMDS 14.5 15.9 17.7 24.8

Total 45 498 1022 4961

Functional Maps

100 LBO eigs 2.5 9.9 14.8 28.9

FMaps 6.6 76.9 46.3 34.4

ICP 1.5 15.2 17.4 25.3

Total 11 102 79 88

Spectral-GF

200 LBO eigs 5.1 12 17.2 33.9

SGF 109.7 122.7 123.2 131.2

Total 115 135 140 165

GDD

100 G-Distances 1.9 11.8 16.4 44.7

GDD 0.3 0.7 0.8 1.3

ICP 0.8 3.3 4.9 7.9

Total 3 16 22 54

Figure 6. Computation times (in seconds) of different methods.

G-Distances stands for the geodesic distance computation. In SG-

MDS 5% of the shape points were used, whereas in GDD 100
points were used for this step. LBO-eigs stands for the LBO eigen-

vectors computation. Note that for each method, different versions

of the LBO and different procedures for computing the eigenvec-

tors were chosen. The ICP step of the GDD is faster than the one

of the FMaps since only 1000 random samples of the shapes were

enough to refine the matrix C. In FMaps, some of the descriptors,

such as finding segments matches, required iterative optimization,

and the computation times significantly varied for different shapes.

GT SGF SGMDS FMaps GDD Post

Horses 470.1 518.7 707.4 1418.2 397.3 483.5

Victorias 146.2 149.4 202.1 147.6 128.5 150.7

Cats 160.4 178.9 178.4 189.7 123.5 154.5

Wolfs 9.32 9.35 9.04 9.42 7.84 9.36

Centaurs 153.5 174 151.5 771.9 122.7 154.4

Davids 58.6 58.6 66.2 62.4 50 58.5

Figure 7. Comparing correspondences as minimizers of 19.

spondence provided by Kim et al. It implies that these two

measures might not always align for non-isometric shapes.

Next, we computed point-to-point correspondences be-

tween five Michael shapes from the TOSCA dataset. We

then colored each shape according to the Voronoi regions

of a set of 20 points. Note that the Voronoi diagram was

generated separately for each shape after mapping the set

of 20 points. The results are shown in Figure 8. Notice that

some of the shapes were mapped into their intrinsic symme-

tries, as the objective 4 cannot differentiate between them

and both solutions are optimal.

In our final experiment, we used the GDD to find the

correspondence while initializing it with the correspon-

dences computed by SGMDS (GDD+SGMDS), functional

maps (GDD+FMaps) and Spectral-GF (GDD+SGF). Figure
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Figure 8. Visualization of a Voronoi diagram on different poses of

the Michael shape, as computed by the proposed method.

9 shows the results. It can be seen that using the GDD it is

Figure 9. Quantitative evaluation of shape correspondence meth-

ods applied to the shapes from the TOSCA and SCAPE datasets,

using the protocol of Kim et al.

possible to successfully improve each of the methods, and

thus reach state of the art results for the nearly isometric

shape correspondence challenge.

8. Conclusions

The main contributions of this paper can be summarized

by:

1. Definition of a new basis that is optimized for geodesic

distances representation. We also showed how to effi-

ciently approximate it.

2. Definition of a generalized canonical form that does

not suffer from embedding errors, and contains all in-

formation about the geodesic distances. We termed it

as the geodesic distance descriptor.

3. An alternative formulation for the approximated GH

distance related minimization of nearly isometric

shapes using geodesic distance descriptors, that is both

efficient and does not require relaxation or truncation

of the permutation matrices.

4. Introduction of a shape correspondence procedure that

obtains state of the art results for matching nearly iso-

metric shapes.

We introduced an efficient and accurate model for find-

ing the best correspondence between two metric spaces.

The proposed method does not involve any relaxation or

truncation of the eigenspace in which the permutation ma-

trix is encoded. The new formulation bridges the gaps

between Spectral-GMDS, functional maps, and canonical

forms, by introducing the Geodesic Distance Descriptors.

The geodesic distance descriptor can be used for dimen-

sionality reduction of tasks that involve geodesic distances.

These distances are translated into a compact representation

which is invariant to the order of vertices. An optimal basis

is proposed whose computation is based on recent methods

for geodesic distance approximations. Experimental results

show that while the accuracy of the metric space matching

minimizer improves, the accuracy of the correspondence, as

evaluated by a given manually-labeled pairs of correspond-

ing points, does not necessarily improve. This finding sug-

gests that the two measures are not necessarily the same.

Finally, it was shown that geodesic distance descriptor can

be used to obtain state of the art matching results for nearly

isometric shapes.
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