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Abstract

In this work, we introduce a highly efficient algo-

rithm to address the nonnegative matrix underapproxima-

tion (NMU) problem, i.e., nonnegative matrix factorization

(NMF) with an additional underapproximation constraint.

NMU results are interesting as, compared to traditional

NMF, they present additional sparsity and part-based be-

havior, explaining unique data features. To show these fea-

tures in practice, we first present an application to the anal-

ysis of climate data. We then present an NMU-based algo-

rithm to robustly fit multiple parametric models to a dataset.

The proposed approach delivers state-of-the-art results for

the estimation of multiple fundamental matrices and homo-

graphies, outperforming other alternatives in the literature

and exemplifying the use of efficient NMU computations.

1. Introduction

Nonnegative Matrix Factorization (NMF) [13] has been

successfully applied as a data analysis technique, mainly

because its part-based representation and sparsity. Unfortu-

nately, the problem of finding a rank-r NMF of a nonnega-

tive matrix A is NP-hard [20]. However, a rank-one NMF

can be obtained in polynomial time. On the one hand, the

rank-one singular value decomposition (SVD) of A is an

optimal solution to the problem

min
rank(Z)=1

‖A− Z‖
2
F . (1)

On the other hand, the Perron-Frobenius theorem implies

that the SVD factors with the largest singular value of a

nonnegative matrix are themselves nonnegative [12, Chap-

ter 8]. Hence, the SVD provides an optimal rank-one NMF.

Following a standard approach in the literature [14, 21]

we might be tempted to iterate two steps until the desired

rank is reached:

1. compute the rank-one SVD suvT of A, and

2. set A = A− suvT.
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Figure 1. In this example we show the histogram of the values of A −
uvT. NMF (which coincides with the SVD in the rank-one case) is not

expected to yield any particular pattern. NMU must yield nonnegative

values. Clearly, the Lagrangian relaxation method (LR), reported as the

state-of-the-art in the literature until now, does not correctly enforce the

underapproximation constraint while the here proposed ADMM method

does. Refer to Fig. 3 to see the dataset details.

However, the matrix (A−suvT) is not necessarily nonneg-

ative, presenting a serious obstacle to the overall approach.

Nonnegative Matrix Underapproximation (NMU) [7, 8,

9] appears as a solution to this challenge by posing the re-

lated problem

min
u∈R

m,v∈R
n

∥

∥A− uvT
∥

∥

2

F
s.t.

u,v ≥ 0,

A ≥ uvT.
(NMU)

Now, A − uvT is constrained to be a nonnegative matrix,

rendering the previous iterative approach possible.

In this work, we first present a new efficient NMU tech-

nique, based on the Alternating Direction Method of Mul-

tipliers (ADMM).1 The resulting algorithm is, to the best

of our knowledge, the only NMU algorithm in the literature

to efficiently solve Problem (NMU) while enforcing all its

constraints (see Fig. 1). Additionally, it is easy to imple-

ment and delivers high-quality results.

We then present an application of the proposed NMU

technique to the problem of robustly fitting multiple para-

metric models in a given dataset.1 Fitting multiple instances

of a given parametric model to data corrupted by noise and

outliers is a widespread problem in computer vision. It is

encountered in a diverse set of applications such as finding

1Source code available at https://goo.gl/xSqKQ4.
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lines/circles/ellipses in images, homography estimation in

stereo vision, motion estimation/segmentation, and analysis

of 3D point clouds. We draw the connection between NMU

and this important problem in computer vision and pattern

recognition and show that the proposed formulation leads

(1) to NMU factors that are naturally interpretable and (2)

to state-of-the-art results. This is also the case for an exam-

ple on climate data here provided.

Organization. The remainder of this paper is organized

as follows. In Sec. 2 we present the proposed NMU tech-

nique and provide an example pattern recognition applica-

tion. In Sec. 3 we introduce the robust fitting formulation.

We present computer vision experimental results in Sec. 4

and finally provide some closing remarks in Section 5.

Notation. Let X be a matrix. (X)ij , (X):j , (X)i: denote

the (i, j)-th entry of X, the j-th column of X, and the i-th
row of X, respectively.

2. Nonnegative Matrix Underapproximation

In several practical scenarios, the state-of-the-art La-

grangian relaxation [7, 8, 9] did not yield good results. In

particular, this algorithm delivers factors u,v that violate

the constraint A ≥ uvT, defeating their own purpose and

usefulness. We show such an example in Fig. 1.

In this work, we propose to use ADMM to solve Prob-

lem (NMU). In short, ADMM solves convex optimiza-

tion problems by breaking them into smaller subproblems,

which are individually easier to handle. It has also been ex-

tended to handle non-convex problems, e.g., to solve several

flavors of NMF [5, 16, 17, 24].

Problem (NMU) can be equivalently re-formulated as

min
u∈R

m,v∈R
n

R∈R
m×n

1
2 ‖R‖

2
F s.t. R = A− uvT,

u,v ≥ 0,R ≥ 0,

(2)

and we consider its augmented Lagrangian,

L (u,v,R,Γ) = 1
2 ‖R‖

2
F + Γ • (A− uvT −R)

+ γ
2

∥

∥A− uvT −R
∥

∥

2

F
, (3)

where Γ ∈ R
m×n is a Lagrange multiplier, γ is a penalty

parameter, and B•C =
∑

i,j(B)ij(C)ij for matrices B,C
of the same dimensions.

The ADMM algorithm works in a coordinate de-

scent fashion, successively minimizing L with respect to

u,v,R, one at a time while fixing the others at their most

recent values, i.e.,

uk = argmin
u≥0

L (u,vk−1,Rk−1,Γk−1), (4a)

vk = argmin
v≥0

L (uk,v,Rk−1,Γk−1), (4b)

Rk = argmin
R≥0

L (uk,vk,R,Γk−1), (4c)
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Figure 2. Left: Six binary images, that were reshaped as column vectors

and concatenated to form the input matrix. The proposed NMU algorithm

achieves perfect reconstruction with 5 factors. Top right: The obtained

left factors: they are sparse and naturally provide a part-based representa-

tion. Bottom right: The values of the right factors for each reconstructed

image; they can be interpreted as the contribution of each left factor to the

reconstruction. Notice how these factors are also naturally sparse.

and then updating the multiplier Γk. For the problem at

hand, each of these steps can be written in closed form as

uk = P+

(

MvT
k−1/

(

vT
k−1vk−1

))

, (5a)

vk = P+

(

uT
kM/

(

uT
k uk

))

, (5b)

Rk = P+

(

1
1+γ

(

γ
(

A− ukv
T
k

)

+ Γk−1

)

)

, (5c)

Γk = Γk−1 + ξγ
(

A− ukv
T
k −Rk

)

, (5d)

where M = A −Rk + γ−1Γk−1 and, for any matrix B,

(P+(B))ij = max {(B)ij , 0}. In practice, we set γ = 1
and ξ = 1. We name NMU-ADMM the iterations in Eq. (5).

As with most matrix factorization problems, there is a

scaling indeterminacy in Problem (NMU), we can multiply

and divide u and v respectively by a scalar constant and

the result will remain unchanged. We thus arbitrarily set

max(uk) = 1 throughout the algorithm iterations and scale

vk accordingly. The algorithm terminates when the relative

change in both u and v is below a given tolerance τ .

Initialization. It is natural to use the rank-one SVD to ini-

tialize u0 and v0. Let x, s,y be the rank-one SVD of A.

Following our convention that max(uk) = 1, we set

u0 = x/ ‖x‖∞ , v0 = ‖x‖∞ sy. (6)

Extracting multiple NMU factors. As stated in the in-

troduction, the algorithm for extracting multiple factors is

straightforward. We iterate the following two steps:

1. extract rank-one NMU factors û, v̂ from A, and

2. A← A− ûv̂T.

A simple toy example illustrating the appealing qualities of

NMU and of multi-factor NMU-ADMM is shown in Fig. 2.
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Figure 3. NMU of climate data (http://www.esrl.noaa.gov/psd/repository/). The data contains monthly mean surface temperatures

arranged in a 144×73 grid since 1948 (800 months in total), forming a 10512×800 matrix. On the first column, we reproduce the NMF factors from [17],

which represent the main seasonal effects (inverted winter and summer in the north and in the south). On the remaining columns, we show the first four

NMU factors (left and right factors in the top and bottom rows, respectively), which amount to 98.64% of the matrix energy. Their patterns are very different

from NMF, first extracting a main global component and then providing part-based insights on different areas. It is also interesting to note that an upward

trend can be perceived in the loadings (right factors) of the first two components, something that is not perceived with NMF, see [17].

2.1. Illustrative application: Climate data analysis

NMF provides a very rich descriptive power for climate

datasets [17]. The evidence of low rank models in climate

data is of interest by itself, as they provide a concise way

for describing the data. Nonnegativiy is a useful addition

since, under this model, the effects of different factors can-

not cancel each other, providing models that are easily in-

terpretable. Furthermore, the rank of the approximation can

be estimated soundly in an online fashion.

In the first example we show that NMU provides rad-

ically different insights, when compared with NMF. The

technical details and results of an experiment using climate

data are shown in Fig. 3. Analyzing the NMU factors, we

see that we first obtain one main global component, with

nonzero entries both in the left and right factors. These fac-

tors are sparse in the remaining components (up to numeri-

cal precision), even if sparsity is not formally promoted.

In Fig. 4, we plot the error/remainder R for every NMU

factor in Fig. 3. The algorithm converges very quickly to a

steady solution. Let us point out that these are typical cases

of the algorithm’s performance. A keen observer might ob-

ject that the convergence is steadier for the first two factors

than for the last two. This can be explained by their high en-

ergy (98.23% of the total energy), making easier to extract

coherent patterns (as these will be more evident).

3. Robust model fitting

We now illustrate how to use NMU and in particular the

proposed ADMM algorithm for solving multi-model esti-

mation problems in computer vision.

Finding a single parametric model instance is a robust

fitting problem that is hard on its own. When an unknown

number of instances might be present in the dataset the
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Figure 4. Convergence of ‖R‖
F
/ ‖A‖

F
in NMU-ADMM for the four

factors computed in Fig. 3 (recall that A is deflated after computing each

NMU factor). In a few iterations, this value is already very close to the

value after 500 iterations. Continuing the iterations improves the result,

gaining marginal accuracy.

difficulty increases due to the unavoidable emergence of

pseudo-outliers (data points that belong to one structure and

are usually outliers to any other structure). Thus, we face

the problem of simultaneous robust estimation of model pa-

rameters and attribution of data points to the estimated mod-

els. These two problems are intrinsically intertwined.

The given dataset {xi}
m
i=1 is composed of m geometric

objects to which we seek to fit one or more multiple in-

stances of a parametric model. Formally, a model µ is the

zero level-set of a smooth parametric function fµ(x; θ),

µ(θ) = {x ∈ R
d, fµ(x; θ) = 0}, (7)

where θ is a parameter vector. The error associated with the

datum x ∈ X with respect to the model µ(θ) is

eµ(x, θ) = min
x′∈µ(θ)

dist(x,x′), (8)
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where dist is an appropriate distance function. We also de-

fine the soft-membership function as

smµ(x, θ) =

{

exp
(

−d2/(2σ2)
)

if d ≤ 3σ;

0 otherwise,
(9)

where d = eµ(x, θ) and σ is the main (and only) parameter

of the proposed approach.

The input of the algorithm is a collection U = {θj}
n
j=1

of model parameters, obtained with a RANSAC-like sam-

pling technique. There are multiple methods in the literature

to obtain such a collection, e.g., [6, 22, 23]. In Alg. 1 we

show a basic prototypical example. The m × n preference

matrix P, whose rows and columns represent respectively

the m = data elements {xi}
m
i=1 and the n = |U| models,

with entries defined as

(P)ij = smµ(xi, θj). (10)

See Fig. 5 for a preference matrix example.

Following [16, 18], we pose the problem of robustly fit-

ting multiple parametric models as a biclustering problem.

In other words, we look for clusters in the space defined by

Cartesian product of elements and models. In this case, the

iteratively computed NMU factors are the extracted biclus-

ters. As we will see in the following, using NMU in this

context leads to an intuitive and simple interpretation of the

retrieved biclusters.

Initialization. In our robust fitting experiments, we found

that initializing NMU-ADMM with a rank-one SVD does

not provide optimal results. Perhaps unsurprisingly, the

strategy chosen by RANSAC (selecting the largest consen-

sus set) proved to be a very good initial condition to our

NMU algorithm. We thus pick the largest column of P, i.e.,

j∗ = argmaxj ‖(P):j‖1, and set

u0 = (P):j∗/ ‖(P):j∗‖∞ , (11a)

v0 = ‖(P):j∗‖∞ uT
0 P/(uT

0 u0). (11b)

Extracting multiple NMU factors from P. This is a par-

ticular example of biclustering, where we know that each

column of P corresponds to at most one ground truth model.

In other terms, it does not make sense to describe any given

column by the combination of multiple models/biclusters.

In practice, this means that once a column (P):j is encoded

in an NMU factor (via a positive load (v)j), we can remove

it entirely from P. Hence, instead of subtracting uvT from

P, we simply set the columns with positive loads to zero.

3.1. Interpretation of the NMU factors

We consider the solution û, v̂ to Problem (NMU), pro-

vided by NMU-ADMM, with P as the input matrix. In

general terms, (û)i, (v̂)j indicate the soft-membership of

Algorithm 1: Random sampling algorithm

input : set of objects X , parametric function fµ.

output: pool U of consensus sets.

1 b← minimum number of elements necessary to

uniquely characterize model µ, see Eq. (7);

2 foreach j ∈ {1 . . . n} do

3 Select at random a set Xj of b elements from X ;

4 Estimate θj from Xj ;

5 U ← {θj}
n
j=1;

element xi to model θj . If the NMU factorization consid-

ers that (P):j “agrees” with û, then (v̂)j > 0; otherwise

(v̂)j = 0.

Let us now analyze the underaproximation constraint.

We first point out that since we minimize
∥

∥A− uvT
∥

∥

F
,

the underapproximation is as tight as possible. Now, for

any column (P):j , we have that (P):j ≥ û(v̂)j . Let dj

be the m-dimensional vector such that (dj)i = eµ(xi, θj).
Since 0 ≤ (P)ij ≤ 1, 0 ≤ û, v̂ ≤ 1; hence,

− log (P):j ≤ − log û− log (v̂)j , (12a)

1
2 (dj/σ)

2 ≤ − log û− log (v̂)j , (12b)

dj ≤ −σ log1/2 û2 − σ log1/2 (v̂)2j (12c)

where the logarithm is taken element-wise. The nonnega-

tive scalar −σ log1/2 (v̂)2j provides a global safety margin

over the distances dj to ensure that they are included in the

solution. The higher the agreement, the lower the margin (if

(v̂)j = 0, we have an infinite margin). A similar pattern is

observed for −σ log1/2 û2, in this case individualizing the

margin for each data point xi (whether more or less leniency

is needed to include it in the solution).

This interpretation of the values of û and v̂, being de-

rived from the underapproximation constraint, is not present

in other formulations of the robust fitting problem [3, 16].

3.2. Computing model instances from NMU factors

Once the NMU factors ût, v̂t are found, we estimate the

corresponding θ̂t by weighted least-squares regression, i.e.,

θ̂t = argmin
θ

m
∑

i=1

(ût)i
[

eµ(xi, θ)
]2
. (13)

Each data point contributes to the estimation of the final

model instance proportionally to its soft-membership to the

factor û.

3.3. Filtering candidates with statistical testing

Not all of the extracted NMU factors will correspond to

meaningful models; in particular, the very last factors will

correspond to noise in P (i.e., spurious models). We use
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Figure 5. Preference matrix (Eq. (10)), before and

after factorization (each NMU factors shown with

a different color). We also show the computed

soft-membership of points to the detected models.

Points at the intersection of two circles are correctly

assigned to both circles.
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Figure 6. Examples of the statistical test presented in Sec. 3.3 with σ = 0.015 (empirical CDFs

shown in the bottom row). The p-values are given in a base-10 logarithmic scale. When there is a

higher concentration of points near the line than in the surrounding region (leftmost example), the

p-value becomes very small. The p-value grows quickly as the line deviates from such a setting.
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(a) Line detection. In all examples σ = 0.035, except in the last one where σ = 0.037.
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(b) Circle detection (σ = 0.047).

Figure 7. Results on synthetic 2D datasets [19]. We show with different colors the final models estimated from the extracted biclusters (some colors may

repeat themselves). In every case, the models are correctly retrieved. The lines in the last example of Fig. 7(a) are noisier and, as one might expect, a

higher σ is needed to recover them. Estimating a circle from 3 points is much noisier than estimating a line from 2 points, as the curvature might change

dramatically; hence, a higher σ is also needed in this case.

statistical testing to determine whether each NMU factor

ût, v̂t is to be kept in the final result.

Let Ft be the empirical cumulative distribution function

(CDF) of the values smµ(xi, θ̂t) and FU denote the CDF for

the uniform distribution over the interval [0, 1]. Following

Kuiper’s statistical test, we define the statistic

D− = max
0≤x≤1

FU (x)− Ft(x). (14)

Since Kuiper’s test is closely related to the Kolgomorov-

Smirnov test, the statistic D− follows a Kolmogorov-

Smirnov CDF. In Fig. 6, we can see several examples of

its value for different lines. The p-value of D− is a good in-

dicator of a high concentration of values near one. Hence, it

is a good indicator of a high concentration of elements near

the evaluated instance model.

The null hypothesis is rejected if D− > Kα where Kα

is found from Pr(K > Kα) = α. The value α is automat-

ically set to 1/
(

m
b

)

where
(

·

·

)

is the combinatorial number

and b is the minimum number of elements necessary to es-

timate/instantiate a model [4].

This test can also be used as a preprocessing step. The

standard random sampling approach to multiple model es-

timation generates many good model instances (composed

of inliers), but also generates many bad models (composed

mostly of outliers). Then, prior to computing the NMU fac-

tors, we discard the columns of (P):j for which the null

hypothesis is not rejected. Here, we also set α = 1/
(

m
b

)

.

3.4. From NMU factors to independent models

In our framework, models are allowed to share elements

as there are no orthogonality constraints between successive

NMU factors. However, if two distinct factors ût and ût′

are too similar, the estimated models θ̂t and θ̂t′ will be too

similar, producing redundant output information.
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Figure 8. Two prototypical examples of the results in Tab. 1 with mis-

classification errors 3.09% (top) and 1.58% (bottom).

To avoid this, we compute the correlation ct,t′ between

every pair of factors t, t′. We consider two factors indepen-

dent from each other if this quantity is lower than 0.6 (i.e.,

an angle between them is above 53°approx., which seems

to a reasonable universal choice). We build a graph by link-

ing together the vertices t and t′ if ct,t′ > 0.6. Notice that

the number of factors is a very small number here, making

the graph small. We then list all maximal independent sets

(MIS) in this graph. Each MIS is a set of mutually compat-

ible factors/models.

We seek to determine which MIS of models/factors is the

one better describing the data. Many different techniques

can be used for this task, such as the Bayesian and Akaike

information criteria or minimum description length. We fol-

low a simplified approach: for each MIS, we consider the

geometric mean of the p-values associated with its models

(computed with the previously described statistical test); we

return the MIS with minimum geometric mean. We note

that results could be improved by using a more sophisti-

cated selection method.

Optionally and if required by the application, as the last

step of our algorithmic pipeline, we can force the models

to have an empty intersection. There are many alternative

ways to address this assignment problem. In this work, we

simply assign elements in the intersection of several models

to the closest model in distance (see Eq. (8)).

4. Experimental results

We start our experimental evaluation with a few small

synthetic datasets [19] where 2D points are arranged form-

ing lines and circles. The results are shown in Fig. 7, where

all models are clearly detected. In this case, we use Alg. 1 as

a sampling strategy, all points being treated as equiprobable

(we sample from a uniform distribution).

The proposed approach can correctly recover overlap-
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Figure 9. Results on the AdelaideRMF dataset [22] for different σ
(Eq. (9)). A small horizontal jitter was added to each colored point in the

plot to improve visualization. The results are roughly stable to the choice

of σ, making this selection less critical than in the hard-membership ap-

proaches, i.e., with a binary preference matrix, e.g. [18, 19].

ping models, see Fig. 7. This can be observed in detail by

comparing the results in Fig. 7(b) with its preference matrix

in Fig. 5. This is an intrinsic limitation of previous state-of-

the-art competitors such as J-linkage [19], T-linkage [10],

RPA [11] and most parametric fitting techniques, which are

generally based on partitioning (clustering) the dataset.

We next estimate multiple fundamental matrices (mov-

ing camera and moving objects) and multiple homographies

(moving planar objects) on the images in the AdelaideRMF

dataset [22]. This is a standard dataset in the literature

(e.g., [3, 10, 11, 15, 18, 22]), but as pointed out in [18] it

contains a non-negligible quantity of errors in its ground

truth. This implies that, beyond some point, an improve-

ment in the actual performance might not necessarily reflect

itself as an improvement compared to the ground truth.

As standard in the literature [3, 10, 11, 15, 18] we use

the misclassification error (ratio of misclassified points) to

measure performance. While the ground truth assigns ele-

ments to groups in a hard fashion, the values smµ(xi, θ̂t)
are continuous in [0, 1]. To compute this error, we simply
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Figure 10. Two examples in which the method exhibits a higher misclassification error (ME) in Tab. 1. From left to right: ground truth hard assignments,

RS-NMU soft assignments, and RS-NMU soft assignments with no statistical testing performed (in pre- nor in post-processind). Top row: the ME goes from

20.07% (center) to 12.54% (right); the main diference is the appearence of an additional model that had been discarded for not passing the statistical test.

Bottom row: the ME goes from 23.73% (center) to 32.82% (right); a few ‘desired’ groups appear (e.g., red dots), but accompanied with some ‘undesired’

groups (e.g., yellow dots). The problem of differentiating the ‘desired’ from the ‘undesired’ groups is a very hard when they contain few points.

binarize them by considering that an element xi belongs to

group t if smµ(xi, θ̂t) > 0.

To show that the proposed method is agnostic to the ran-

dom sampling technique, we use MultiGS [2] for these ex-

periments.2 Of the total running time, MultiGS uses on

average 98%, while the remaining 2% corresponds to the

proposed ADMM algorithm for NMU.

The results on the full dataset are presented in Tab. 1. For

this experiment, we term the approach proposed in Sec. 3 as

RS-NMU. We clarify that RPA [11] and FABIA [3] achieve

good results; however, to yield these performances, they use

the ground truth number of models as an input. The remain-

ing methods, as well as the method here proposed, automat-

ically estimate this number.

To estimate fundamental matrices, see Tab. 1(a), RS-

NMU outperforms all its competitors, even being slightly

better in median than RPA. To estimate homographies, see

Tab. 1(b), the differences with the other methods are even

higher, with RS-NMU clearly outperforming all of them.

These observations hold true, even if the σ is not accurately

set (compare the last two columns in tabs. 1(a) and 1(b)). In

Fig. 8 we show two examples of the RS-NMU results. This

improved performance comes from a lightweight algorithm,

using approx. 2% of the total running time.

As one might expect, there is not a universal value of

σ that works best for all the image pairs, see for example

‘breadcube’ and ‘biscuit’ in Tab. 1(a).

We analyze in Fig. 9 the performance of RS-NMU as σ
changes. We can see that the performance is not dramati-

cally affected, providing to the user assurance that there is

no need to fine-tune σ in order to obtain good results.

In Fig. 10, we present two image pairs for which RS-

NMU presents sub-optimal results. We show with a sim-

2Interestingly, a recent technique [1] has reduced to two the minimal

sample size (see Alg. 1) for fundamental matrices; its use would signifi-

cantly reduce the computational complexity of the sampling step, imposing

an upper bound of O(m2) to the total number of possible combinations.

ple argument that these results are not due to the NMU ap-

proach nor to the proposed NMU-ADMM. The group of

green points in the top-left ground truth pair has errors, as

pointed out in [18]. This means that its effective size is

smaller than what is marked in the ground truth. Thus, it

does not pass the statistical test in Sec. 3.3. If we disable

testing in our pipeline, we recover the error-less part of this

group. However, disabling the testing might lead to recover

other spurious groups as well, see the bottom row of Fig. 10.

5. Conclusions

In this work, we first presented a highly efficient algo-

rithm to address the nonnegative matrix underapproxima-

tion (NMU) problem. The solutions provided by our algo-

rithm are the only ones in the literature for which the under-

approximation constraint holds. NMU’s results are interest-

ing as, compared to traditional NMF, they present additional

sparsity and part-based behavior without explicitly adding

sparsity-inducing priors. To show this, we have presented a

practical application to the analysis of climate data.

We have also presented an application to the task of ro-

bustly fitting multiple parametric models to a dataset. Ac-

companied by a specially designed algorithmic pipeline,

NMU delivers state-of-the-art results, outperforming other

alternatives in the literature.

In the future, we look forward to applying our NMU al-

gorithm to the analysis of other datasets, since it will pro-

vide alternative insights to the ones obtained with other ma-

trix factorization tools.

Finally, to obtain a completely autonomous and parame-

terless robust fitting system, we need to automatically esti-

mate σ, not only for each image pair, but for each particular

model, as different models might have different noise lev-

els. An interesting lead would be to use the statistical test

in Sec. 3.3 as a way to infer the optimal σ by computating

the model’s optimal p-value.
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RSE ARSE T-linkage RCMSA RPA FABIA RS-NMU RS-NMU
[18] [18] [10] [15] [11] [3] σ = 5.00 σ = 6.00

biscuit 22.60 0.90 16.93 14.00 1.15 0.00 5.45 0.91

biscuitbook 3.50 1.20 3.23 8.41 3.23 1.32 2.35 1.76

biscuitbookbox 3.90 1.90 3.10 16.92 3.88 3.86 3.09 2.70

boardgame 15.40 15.00 21.43 19.80 11.65 8.96 20.07 20.43
book 3.80 2.20 3.24 4.32 2.88 0.00 0.53 0.00

breadcartoychips 27.70 28.60 14.29 25.69 7.50 4.22 3.80 16.88
breadcube 2.60 0.90 19.31 9.87 4.58 19.42 1.65 3.31
breadcubechips 15.70 14.80 3.48 8.12 5.07 0.87 1.74 2.17

breadtoy 1.40 2.20 5.40 3.96 2.76 19.62 4.86 4.86
breadtoycar 25.00 25.00 9.15 18.29 7.52 0.60 2.41 4.22

carchipscube 12.80 12.80 4.27 18.90 6.50 1.52 3.64 3.03

cube 2.40 12.50 7.80 8.14 3.28 1.66 2.64 4.64
cubebreadtoychips 13.70 14.30 9.24 13.27 4.99 1.07 13.46 3.06

cubechips 2.90 3.60 6.14 7.70 4.57 0.53 1.41 1.41

cubetoy 3.80 4.60 3.77 5.86 4.04 2.21 1.61 2.41

dinobooks 23.60 18.30 20.94 23.50 15.14 9.72 16.39 16.94

game 0.40 0.90 1.30 5.07 3.62 0.00 5.58 3.86
gamebiscuit 9.90 4.30 9.26 9.37 2.57 2.44 8.54 9.45
toycubecar 8.10 8.10 15.66 13.81 9.43 9.50 8.50 8.50
Mean 10.48 9.06 9.37 12.37 5.49 4.61 5.72 5.82

STD 8.97 8.57 6.66 6.58 3.48 6.13 5.44 5.96
Median 8.10 4.60 7.80 9.87 4.57 1.66 3.64 3.31

(a) Misclassification error (%) for the estimation of multiple fundamental matrices.

RSE ARSE T-linkage RCMSA RPA FABIA RS-NMU RS-NMU
[18] [18] [10] [15] [11] [3] σ = 4.33 σ = 5.33

barrsmith 3.40 4.70 49.79 20.14 36.31 29.88 11.20 11.20
bonhall 29.20 38.00 21.84 19.69 41.67 24.02 17.42 13.39

bonython 1.60 5.20 11.92 17.79 15.89 6.82 0.00 0.00

elderhalla 6.10 3.70 10.75 29.28 0.93 3.04 0.93 0.93

elderhallb 12.20 20.40 31.02 35.78 17.82 18.63 11.37 11.37

hartley 1.60 1.30 21.90 37.78 17.78 23.59 0.94 0.62

johnsona 13.90 16.40 34.28 36.73 10.76 17.96 4.56 3.22

johnsonb 15.10 17.60 24.04 16.46 26.76 24.50 23.27 23.11
ladysymon 3.50 2.60 24.67 39.50 24.67 11.81 2.95 2.95

library 2.40 0.90 24.53 40.72 31.29 20.47 1.40 0.93

napiera 8.20 11.00 28.08 31.16 9.25 21.85 2.98 5.30

napierb 18.10 18.60 13.50 29.40 31.22 36.68 18.92 15.83

neem 4.30 7.80 25.65 41.45 19.86 11.20 2.07 2.90

nese 1.20 2.10 7.05 46.34 0.83 4.92 0.00 0.39

oldclassicswing 1.70 2.50 20.66 21.30 25.25 7.92 1.58 2.11
physics 28.20 22.30 29.13 48.87 0.00 0.00 1.89 2.83

sene 0.40 0.80 7.63 20.20 0.42 2.20 1.60 0.40

unihouse 7.60 11.20 33.13 2.56 5.21 15.76 7.25 7.58
unionhouse 0.90 0.90 48.99 2.64 10.87 21.54 0.30 0.30

Mean 8.40 9.89 24.66 28.30 17.20 15.94 5.82 5.55

STD 8.90 10.04 11.96 13.45 12.87 10.10 7.15 6.51
Median 4.30 5.20 24.53 29.40 17.78 17.96 2.07 2.90

(b) Misclassification error (%) for the estimation of multiple homographies.

Table 1. Results on the AdelaideRMF dataset [22]. RPA/FABIA do not automatically determine the number of models (they draw this number from the

ground truth). Grayed cells mark the first (dark gray) and second (light gray) best results among the methods that automatically estimate this number.
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