
From local to global: Edge profiles to camera motion in blurred images

Subeesh Vasu1, A. N. Rajagopalan2

Indian Institute of Technology Madras

subeeshvasu@gmail.com
1
, raju@ee.iitm.ac.in

2

Abstract

In this work, we investigate the relation between the edge

profiles present in a motion blurred image and the underly-

ing camera motion responsible for causing the motion blur.

While related works on camera motion estimation (CME)

rely on the strong assumption of space-invariant blur, we

handle the challenging case of general camera motion. We

first show how edge profiles ‘alone’ can be harnessed to

perform direct CME from a single observation. While it is

routine for conventional methods to jointly estimate the la-

tent image too through alternating minimization, our above

scheme is best-suited when such a pursuit is either imprac-

tical or inefficacious. For applications that actually favor

an alternating minimization strategy, the edge profiles can

serve as a valuable cue. We incorporate a suitably de-

rived constraint from edge profiles into an existing blind de-

blurring framework and demonstrate improved restoration

performance. Experiments reveal that this approach yields

state-of-the-art results for the blind deblurring problem.

1. Introduction

Camera motion estimation (CME) plays a vital role in

many multi-image based applications such as structure from

motion, super-resolution, HDR imaging etc. These applica-

tions involve sharing of information across images, which is

typically achieved by establishing feature correspondences.

But this becomes a challenging task in the presence of mo-

tion blur. CME is also important in many single motion

blurred image based applications such as image restoration,

scene depth estimation ([18, 36]), splicing detection ([12]),

estimation of 3D structure of light sources ([38]) etc.

A common approach for CME from a motion blurred im-

age is to pose it as a blind deblurring problem, wherein both

latent image (or its features) and camera motion are esti-

mated within an alternating minimization (AM) framework.

In the blind deblurring literature, most approaches assume

space invariant (SI) blur (i.e. pure in-plane camera transla-

tions) ([3, 9, 27, 10, 11, 1, 35, 15, 17, 2, 4, 29, 20, 21]).

While this leads to very efficient blind deblurring algo-

rithms, this assumption does not hold true in practice. It is

well-known ([16, 13]) that natural camera shake often con-

tains rotational components resulting in spatially varying

(SV) blur in the captured images. As is evident from recent

works ([5, 31, 7, 34, 37, 22]), one needs to account for the

SV nature of blur for accurate estimation of general camera

motion. While this is an important problem, the increase in

number of unknowns makes it quite ill-posed, demanding

stronger priors for achieving quality performance. Very ill-

posed problems such as depth-aware deblurring and rolling

shutter motion deblurring, either avoid using AM altogether

([24]) or need a good initialization of the camera motion

([36, 28]) derived from local point spread functions (PSFs)

i.e., blur kernel estimates returned by an off-the-shelf blind

deblurring algorithm. However, their performance is lim-

ited because PSF estimates from small regions can be erro-

neous.

A recent trend in blind deblurring is to come up with

class specific or generic priors ([35, 2, 29, 37, 20, 21, 22])

to reduce the ill-posedness of the problem. While some of

these priors have shown great promise, their performance is

limited due to one or more of the following reasons: fail-

ure on images for which prior does not hold good, inability

to handle SV blur, computational complexity etc. In SV de-

blurring, [37] has been widely popular for a long time. They

employed an L0 prior on the gradients of the image while

performing CME. The state-of-the-art work in [22] employs

dark channel prior in addition to the L0 prior of [37] to sig-

nificantly improve the performance of SV deblurring.

In this work, we address the problem of CME from a

single motion blurred image by harnessing edge profiles.

There are only two notable works that have used edge pro-

files to derive useful information. Cho et al. [2] have mod-

eled the relation between PSF and edge profiles to perform

SI deblurring. Tai et al. [30] have used edge profiles for esti-

mation of camera response function (CRF) from SI blurred

images. We first propose an approach (called EpAlone)

for efficient and direct CME from edge profiles i.e., sans

the need for latent image estimation. We expand the scope

of edge profiles and employ them for estimation of general

camera motion. While problems such as blind deblurring,
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HDR imaging etc. perform joint estimation of the latent

image and camera motion, for applications where such a

scheme is impractical or inefficacious, EpAlone is apt. For

applications that actually rely on such a joint estimation

scheme, a wise choice is to use edge profiles as an addi-

tional regularizer. Recent works on blind deblurring have

([21, 22]) revealed that the performance can be improved

by adding strong priors onto existing methods. Following

these works, we propose a method (called Xu + Ep) that in-

corporates an efficient and effective constraint derived from

edge profiles into the existing method of Xu et al. [37]

to achieve state-of-the-art performance. Both the proposed

methods (EpAlone and Xu + Ep) are based on new theoret-

ical claims that we introduce in this paper. The correspond-

ing proofs are provided in the supplementary material due

to space constraints.

Our main contributions are summarized below.

• For the first time in literature, we derive and analyze

the relation between edge profiles present in a blurred image

and the underlying 6D camera motion.

• We propose a new constraint derived from edge profiles

and use it to perform efficient and direct CME from a single

motion blurred image.

• We propose a blind deblurring scheme by elegantly in-

corporating our new constraint into the formulation of [37]

to achieve state-of-the-art performance.

2. Edge profile and convolution

Edge profile is the alpha matte taken over a line along

the edge orientation (by treating the two colors of homoge-

neous regions on either sides of the edge as background and

foreground). In our work, the boundary between two homo-

geneous regions in an image is considered as an edge. Let

us denote the edge profile of length N across an edge as αi

where i = 1, 2, .., N . Then the intensity values along a line

L lying along the edge orientation can be expressed as

L(i) = c1αi + c2(1− αi) (1)

with c1 and c2 being the colors of the two homogeneous re-

gions on either side of the edge. Without loss of generality,

assume that the edge that we are working with is a vertical

edge. Consider a binary step edge S defined over a rectan-

gular region around the considered edge as

S(x, y) =

{

1 x ≥ 0
0 x < 0.

(2)

For a clean image, the intensity I at this region can be ex-

pressed as,

I = Sc1 + (1− S)c2 (3)

Blurring the above region with a kernel k results in

BI = k ∗ I = (k ∗ S)c1 + (1− k ∗ S)c2 (4)

= Skc1 + (1− Sk)c2 (5)

where Sk embeds the variation in intensity while moving

across the edge in the motion blurred image BI . By com-

paring Eq. (1), Eq. (2), and Eq. (5) we can observe that, the

edge profile α in the blurred image is equal to the middle

row of Sk. It is trivial to see that the rows of Sk and the cu-

mulative of the projection of k onto X axis are equivalent,

i.e.,

Sk(x, y) =

x
∑

u=−∞

∞
∑

v=−∞

k(u, v) =

x
∑

u=−∞

P (u) (6)

where P is the projection of k onto the X axis. Note that the

final expression in Eq. (6) is not a function of y indicating

that all rows of Sk will be identical.

Similarly one can show that, in general, an edge profile is

equivalent to the cumulative distribution function (CDF) of

the projection of PSF onto the line along the edge orienta-

tion [30] (or CDF of the Radon transform of the PSF along

the direction orthogonal to the edge orientation [2]). If the

local region I in the image is not blurred (i.e., BI = I), then

Sk = S i.e., the edge profile in that region will be a step

response. Note that these properties of step edges are de-

fined over local regions. Since we can treat the blur at local

regions as SI even for general camera motion, we can use

the above results in SV blurred images too. This opens up

the possibility of exploiting edge profiles for general CME.

More specifically, one could solve for the camera motion

by looking for the solution which favors ideal step edges in

corresponding latent image estimates.

An illustrative example supporting the results discussed

in this section is displayed in Fig. 1. We have used a sample

PSF (Fig. 1(a)) from the dataset of [16] to blur an example

image, a region extracted from which is shown in Fig. 1(b).

The projection of PSF onto two different directions along

with the CDF of this projection is displayed in Fig. 1(a).

As is evident from Fig. 1(b), the projection of PSF is equal

to the differential of the edge profile extracted along the re-

spective directions.

3. Edge profile to camera motion

In this section, we derive the relation between the local

edge profiles present in a motion blurred image and the un-

derlying global camera motion. For general camera motion,

the blurred image (g) can be expressed as an aggregate of

warped instances of the latent image f as ([5, 34, 23])

g(x) =
1

te

te
∫

0

f((Ht)−1(x))dt (7)

where x = (x, y) represents the spatial coordinates, te is

the total exposure time of the image, Ht corresponds to the

homography relating the latent image to the projection of
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(a) (b)
Figure 1. Equivalence between the CDF of projection of PSF and

its corresponding edge profile formed in the blurred image. (a) A

sample PSF and its projection along two directions and the CDF

of the projections. (b) An example region from a corresponding

blurred image along with the edge profile extracted from it (along

orthogonal directions) as well as the differential of the edge profile.

the scene onto the image plane at the time instant t. An

equivalent way to relate g and f is to use the warp which is

defined based on the poses that the camera undergoes during

motion.

g(x) =

∫

γ∈T

Ψ(γ)f((Hγ)−1(x))dγ (8)

where T is the set of different poses that the camera un-

dergoes during the exposure time, γ refers to a single pose

from T , Hγ is the homography warp corresponding to γ and

Ψ(γ) is the fraction of time over which the camera stays at

γ. Eq. (8) allow to express the same relation as Eq. (7)

but in a time-independent fashion. Ψ is referred to as mo-

tion density function (MDF) ([5]) or transformation spread

function (TSF) ([23]). For general camera motion, the PSF

at x in the blurred image can be related to the MDF ([23])

as

k(x, u) =

∫

γ∈T

Ψ(γ)δ(u − (Hγx − x))dγ (9)

where Hγx refers to Hγ(x), the coordinates obtained by

warping x with the homography Hγ . Here PSF k(x, u) is

defined as a function of two variables, since it is space vari-

ant (SV) in nature, where u = (u, v) represents the spatial

coordinates over which the PSF at x is defined. Eq. 9 is a

direct implication of the fact that a pose vector γ0 assign its

weight Ψ(γ0) to a point u0 in the PSF, and the PSF can be

obtained by integrating such assignments from all poses in

MDF. The pose γ0 can be related to u0 as

u0 = Hγ0x − x (10)

Let us denote k(x, u) as kx(u, v). The differential of edge

profile dEθ,x (along θ + π/2) at x can be expressed as the

Radon transform of the PSF at x along θ ([2]).

dEθ,x(ρ) =

∫ ∫

kx(u, v)δ(ρ− u cos θ − v sin θ)dudv

(11)

where ρ represents the radial coordinates of the Radon pro-

jection. Combining the relations in Eq. (9) and Eq. (11) we

are able to directly relate MDF to the edge profile as1

dEθ,x(ρ) =

∫

γ∈Γ

Ψ(γ)δ(ρ− (Hγ
xx − x) cos θ−

(Hγ
y x − y) sin θ)dγ (12)

Here Hγ
xx refers to the x coordinate of Hγ(x). Eq. (12)

relates the differential of edge profile (dE) directly with the

MDF or the underlying camera motion. By discretizing the

relation in Eq. (12) we obtain

dEθ,x(ρ) =

NT
∑

p=1

w(p)δ(ρ− (Hp
xx − x) cos θ−

(Hp
yx − y) sin θ) (13)

where w is the MDF weight vector defined over a discrete

pose space P with the value being nonzero (and positive)

only for those poses p ∈ P over which the camera has

moved, and NT is the total number of poses in P . This

discretization allows us to relate the edge profile with the

MDF vector w in matrix-vector multiplication form as

dEθ,x = Mθ,xw (14)

where Mθ,x is the measurement matrix formed according to

the relation in Eq. (13), dEθ,x ∈ Nρ × 1,Mθ,x ∈ Nρ ×NT

and w ∈ NT × 1 with Nρ being the length of the edge

profile. Using such Ne edge profiles, we can write

dE = Mw (15)

where dE ∈ NρNe × 1,M ∈ NρNe ×NT . Thus a collec-

tion of edge profiles from a motion blurred image can be re-

lated to the MDF elegantly through Eq. (15). We can solve

for MDF w by minimizing the following cost function.

ŵ = argmin
w

||dE −Mw||2 + λ||w||1 (16)

where L1 norm is used to enforce the natural sparsity of

camera motion trajectory in the pose space, and λ is the

prior weight on MDF. Note that this approach is similar to

the idea of recovering MDF from local PSF estimates as

suggested in [24]. Since the local PSF estimates obtained

through conventional blind deblurring schemes can be erro-

neous, the applicability of CME from PSF is limited. On

the other hand, our formulation in Eq. (16) directly relate

camera motion to the naturally available edge profiles in the

image, improving the scope of direct CME. In other words,

while the performance of CME from PSFs depends on the

performance of existing methods on PSF estimation, our

method does not suffer from such a limitation.

1Details of the derivation can be found in supplementary.
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4. Recovering camera motion from edges

If sufficient number of edge profiles is available, we can

use Eq. (16) to estimate camera motion accurately. How-

ever, there are some issues in attempting to use Eq. (16) in

practical situations. To extract edge profiles from different

locations in an image, we follow the procedure in [2]. They

have used a set of image analysis heuristics including de-

tection of edges in blurry images and a number of outlier

rejection schemes. However, a fundamental problem is that

the extracted edge profiles will not be aligned with respect

to each other, and hence cannot be directly used for CME in

Eq. (16). To align the extracted edge profiles, [2] exploits

the fact that the center of mass of the PSF corresponds to the

center of mass of their 1D projections. Since this was not

valid under the influence of CRF, [30] employed extreme

points to align the edge profiles along the same direction.

But this is not valid for edge profiles from different orienta-

tions, since the homographies which map to extreme points

can be different for projections along different directions.2

Hence, for our scenario we cannot use extreme points for

alignment.

4.1. Alignment and implications

In this section, we show that edge profiles can be aligned

using the center of mass, even for general camera motion.

We restrict our analysis to two different but commonly used

approximations for 6D camera trajectories. First, we an-

alyze the case of model1 which models 6D motion using

in-plane translations and in-plane rotations ([5]). Later we

extend the result to model2 which employs pure 3D rota-

tions ([34]) as an approximation to 6D motion.

Claim 1: For model1, if the in-plane rotational motion

undergone by the camera is small (as is typical for camera

shakes in handheld situations [13, 28]) then it can be shown

that the centroid of MDF vector will correspond to the cen-

troid of PSF i.e., the centroid pose of the camera obtained

from MDF will map points to the centroid of PSFs gener-

ated by the camera motion or equivalently to the centroid of

the corresponding edge profiles.

For small in-plane rotations one can show that the cen-

troid co-ordinates (uc, vc) of PSF at x in the image corre-

sponds to the centroid (tcx, t
c
y, θ

c
z) of MDF.3 i.e.,

uc =
∑

u

∑

v

ukx(u, v) = Hc
xx − x (17)

vc =
∑

u

∑

v

vkx(u, v) = Hc
yx − y (18)

where Hc is the homography corresponding to the centroid

of MDF. The correspondence between the centroid of a PSF

2An illustrative example is provided in supplementary.
3Detailed proof is provided in supplementary.

and its corresponding edge profiles is trivial to see from the

fact that the edge profile is a linear projection of PSF. Since

the correspondence between the centroids of edge profile

and PSF is always valid [2], the alignment of PSFs auto-

matically refers to alignment of edge profiles.

Furthermore, since in-plane translations are equivalent

to out-of-plane rotations (for large focal length) [34], we

can conclude that the centroid based alignment of edge pro-

files is sufficient for model2 also. This is also supported

by the work in [13] which shows that model1 and model2
are equally good in approximating the original 6D camera

trajectories caused by natural handshakes.

Next, we analyze the effect of centroid-based alignment

on the estimation of camera motion and latent image. It

is well-known that the same blurred image can be pro-

duced by different valid (i.e., correct upto a homography)

latent image-camera motion pairs. The aligned edge pro-

files should correspond to a valid camera motion to ensure

that the estimate returned by Eq. (16) is correct. Next, we

will show that a collection of centroid aligned PSFs is con-

sistent with a valid camera motion and latent image that can

produce the same blurred image (implying that the aligned

edge profiles can be directly used for CME). Let us consider

a collection of m PSFs, k1, ..km obtained from locations

x1, ..xm in the blurred image.

Claim 2: The centroid aligned PSFs correspond to a

camera motion and a latent image both of which are con-

sistent with the given blurred image and correct upto a ho-

mography.

Let there be n active (non-zero) poses in the MDF w0,

with H1, .., Hn being the corresponding homographies,

and L be the latent image. We can show that4 the aligned

PSFs corresponds to another latent image (Lc) defined on

coordinates Hcx (i.e. related to the L through the homog-

raphy warp Hc) and a new MDF (formed of a collection

of homographies Hj(Hc)−1) both of which are consistent

with the same blurred image. Thus, using the centroid

aligned edge profiles we can estimate one of the valid cam-

era motion wc
0 using Eq. (16).

To verify the results of claims 1 and 2, and also to an-

alyze the impact of the error introduced in the CME by

centroid alignment of edge profiles, we performed the fol-

lowing experiment. Using camera trajectories (ground truth

camera motion) from the database of [13], we produced

edge profiles at different locations in the image. These edge

profiles are aligned with respect to the centroid and then

used for estimation of corresponding MDF using Eq. (16).

This MDF is then used to generate PSFs at different loca-

tions. We generate another set of PSFs using the centroid

aligned camera trajectories obtained by mapping the ground

truth camera trajectory using (Hc)−1. From claims 1 and

2, these two PSFs should be identical. We computed the

4For detailed discussions on claim 2, refer to supplementary material.
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normalized cross correlation (NCC) values between these

two sets of PSFs to verify our observations. This also mea-

sures the accuracy (validity) of centroid alignment of PSFs

for different kinds of camera motions. In addition to this,

we computed the difference (say dc) between the centroid

of the edge profiles and the point to which the centroid of

camera trajectories maps. We carry out experiments in two

different ways. On the one hand, we tested the applicabil-

ity of our proposed method on model1 and model2 using

the camera trajectories from database of [13] (Figs. 2(b,

c, e, f)). On the other hand, we separately investigated the

variation of the accuracy with respect to in-plane rotations

alone using a single camera trajectory. The amount of rota-

tion spanned by the trajectory is increased to observe the

behavior of both error in centroid as well as NCC value

(displayed in Figs. 2(a, d)). We found that dc is always sub-

pixel (Figs. 2(a,b,c)) and the correlation values are consis-

tently high (Figs. 2(d,e,f)), which supports our theoretical

findings. Although the error increases with increase in the

degree of rotation, it is still quite small even for in-plane

rotations upto 7 degrees, which is well within the range in-

troduced by incidental camera shakes.

(a) (b)

(c) (d)

(e) (f)
Figure 2. Analyzing the impact of centroid alignment on CME.

These measures are estimated from PSFs generated all over an

example image. Absolute value of maximum and average er-

ror between estimated centroid and ground truth centroid for the

camera motion using (a) in-plane rotation only, (b) model1, and

(c) model2. Minimum and average value of NCC between non-

blindly estimated PSFs and GT PSFs for (d) in-plane rotation only,

(e) model1, and (f) model2.

4.2. Computational considerations

On the basis of claims 1 and 2, we can align all the edge

profiles extracted from a given motion blurred image and

perform CME. However, direct use of Eq. (16) is computa-

tionally expensive. This is because both the construction of

the measurement matrix M and operations involving such a

large matrix are time-consuming. Therefore, we propose to

re-frame our constraint in Eq. (16) so as to exploit the ad-

vantages of the computationally efficient filter-flow frame-

work ([8]).

From claims 1 and 2, we observe that the centroid loca-

tions of edge profiles on the blurred image can be treated

as the location of the step edges in the corresponding latent

image. From this principle, we can generate a prediction

image (Ip) formed from all the step edges in the latent im-

age. We build an edge profile image (Iep) formed from the

differential of edge profiles at the respective locations. Us-

ing Eq. (6), Eq. (15) and claims 1 and 2, we note that

the step edges in Ip are related to the corresponding edge

profiles in Iep through a valid camera motion. Hence, we

propose to use the following estimation equation, formed

from Ip and Iep, to replace the computationally expensive

formulation of Eq. (16).

ŵ = argmin
w

||Tw(Ĩp)− ˜Iep||2 + λ||w||1 (19)

Here Tw represents the set of warping operations defined by

w. This non-uniform blur relation between Ip and Iep can

be implemented efficiently using the filter-flow framework

[8]. We use our proposed constraint in Eq. (19) to perform

blind CME from edge profiles and name this as EpAlone.

The computational complexity of EpAlone can be reduced

further, as discussed next in the generation of Ip and Iep.

Claim 3: The absolute value of differential of edge pro-

file (P in Eq. (6)) is equivalent to the absolute gradient of

a blurred image (at the location of the edge profile) normal-

ized by the difference between the two homogeneous colors

involved. i.e.,

|▽BI | = |(c1 − c2)|P (20)

From claim 3,5 we form Ip by assigning the absolute

value of (c1 − c2) at the centroid positions. Iep is formed

by collecting the slices (around the centroid of edge profile)

of absolute gradients along the direction of edge profiles. In

our experiments, we observed that taking slices only along

the direction of edge profile often leads to small errors in

the estimate of camera motion, mainly due to errors in the

estimate of edge profile orientation. As a solution, we have

chosen slices over a small angular window around the es-

timated edge profile orientation. This improves the robust-

ness of Eq. (19) by making it less sensitive to errors in

orientation estimates (as compared to Eq. (16)).

5For detailed discussions on claim 3, please refer to supplementary.
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(a) (b) (c) (d) (e) Xu et al. [37]

(f) EpAlone (g) Xu + Ep (h) kernels (EpAlone) (i) kernels (Xu + Ep)

(a) (e)

(f) (g)

(j) Patches from (a,e,f,g)
Figure 3. Synthetic example on non-uniform deblurring: (a) Input motion blurred image, and (b) our prediction image. Edge profile image

generated by (c) single-direction mask, and (d) multi-direction mask. (e-g) Deblurred results. (h-i) Estimated kernels from proposed

methods.

An illustrative example on the generation of Ip and Iep
is given in Fig. 3. We have used the centroid locations of

extracted edge profiles from the blurred image (Fig. 3(a)) to

form the prediction image (Fig. 3(b)), with the value at each

position being the absolute value of differences between the

colors of nearby homogeneous regions. The corresponding

edge profile images formed by using single as well as multi-

direction mask is shown in Figs. 3(c-d).

Remarks: Our idea of building the prediction image is sim-

ilar to the use of edge prediction units in existing deblurring

approaches. The difference lies in the fact that, we use the

idea of edge profiles for direct prediction of step edges, as

compared to the iterative prediction schemes (through filter-

ing techniques or image priors) used by other methods. Our

primary objective in proposing EpAlone is to reveal the po-

tential of the new constraint (that we advocate through Eq.

(19)) ‘alone’ to regularize the problem of CME.

5. Deblurring with edge profile constraint

Since the dimensionality of unknowns is large, Eq. (19)

needs adequate number of edge profiles spanning a wide

range of orientations to obtain an accurate estimate of MDF.

But it may not always be possible to fulfill this require-

ment. In this section, we show that Eq. (19) can still serve

as a valuable constraint to regularize existing methods for

CME. This is in spirit with recent works on blind deblur-

ring ([21, 22]) that have proposed new priors as an addition

to the image prior in [37], to achieve better performance.

Following this line of thought, we also propose to use Eq.

(19) as an additional constraint to the existing method in

[37] to uplift its performance. Although our constraint can

be used to improve the performance of any deblurring meth-

ods, we chose to use [37], since their L0 norm prior on latent

image gradients was found to yield the best results among

works in SV deblurring. We incorporate Eq. (19) into the

formulation of [37] and call this new approach as Xu + Ep.

Following are the modified equations used for estimation of

latent image and MDF in Xu + Ep.

f̃ t+1 = argmin
f̃

{||M t
wf̃ − g̃||2 + λf ||▽f̃ ||0} (21)

wt+1 = argmin
w

{||M t+1

▽f w − ▽g̃||2+

λIp ||MIpw − ˜Iep||2 + λw||w||1}
(22)

where t is the iteration number, ∗̃ refers to lexicographically

arranged form of ∗. M▽f and MIp are the warping matrices

built from gradient of latent image (▽f ) and Ip, and Mw is

the measurement matrix formed of w. The first and second

term in Eq. 22 act as data constraints whereas the last term

is the sparsity prior on the camera trajectory. While λIp con-

trols the influence of our proposed constraint on the entire

optimization, λw determines the degree of sparsity in w. In

Eq. 21, we have used an L0 norm prior ([37, 21, 22]) on im-

age gradients weighted by a scalar parameter λf for latent

image estimation. It is straightforward to see that by enforc-

ing our edge-profile constraint, we are indirectly motivating

the step edges present in the latent image to strongly influ-

ence the camera motion estimate. This improvement over

[37] delivers state-of-the-art performance as we shall show

later.

Since our additional constraint respects the filter-flow

framework formulation ([7, 32]), the optimization problems

in Eq. (21) and Eq. (22) can be solved entirely using filter-

flow. In Xu + Ep, we alternately minimize between latent

image and MDF estimation in a scale-space fashion. All
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Algorithm 1 CME for a single scale.

Input: Blurred image g at current scale, initial MDF esti-

mate w0 obtained from previous scale.

Output: Refined MDF estimate at current scale.

1: For t = 1 : nmax

2: Estimate f t by solving Eq. (21)

3: Estimate wt by solving Eq. (22)

4: End

5: Return wt as the refined estimate of MDF for current

scale.

major steps (for a single scale) for Xu + Ep is listed in Al-

gorithm 1.6 It should be noted that, the objective of the

AM is to obtain an accurate estimate of camera motion. To

obtain the final restored image, we perform a non-blind de-

blurring using the camera motion estimate returned by AM.

Remarks: Exploiting claims 1, 2, and 3 we have developed

a computationally efficient constraint leading to two elegant

CME methods, EpAlone and Xu + Ep. However, there are

important differences in their applicability. Unlike existing

approaches (including Xu + Ep), EpAlone circumvents the

need for intermediate latent image estimation. Therefore,

applications such as CRF estimation ([30]), normal recov-

ery ([25]), depth-aware deblurring ([24, 36]), rolling shutter

motion deblurring [28] etc. that either do not warrant AM or

need a good initial estimate of camera motion, can benefit

from EpAlone or its underlying formulations. For appli-

cations such as blind deblurring, HDR imaging etc. which

rely on AM and explicit latent image estimation, the edge

profile constraint we derived can be a valuable add-on as

discussed for the deblurring problem.

Figure 4. Quantitative evaluation on first 7 kernels from [13].

6. Experiments

Since visual evaluation of estimated camera motion is

difficult, we compare the performance of our proposed

methods based on the latent image estimates obtained from

the resulting camera motion. This in turn signifies the ac-

6Implementation details of our algorithm and the parameter settings

used in our experiments are provided in the supplementary.

curacy of CME. We use [14] to get a latent image esti-

mate using the MDF obtained from both EpAlone and Xu

+ Ep. We employ the filter-flow implementation of Lasso

algorithm [19] provided by [33, 32], for CME using both

EpAlone and Xu + Ep. Although our main focus was on

CME from non-uniformly blurred images, we do compar-

isons for SI cases too. For SI blur, we limit our qualita-

tive comparisons to two closely related approaches [2, 37],

and the current state-of-the-art work [22]. For SV blur, we

compare with [5, 34, 6, 7, 37, 22], and [26]. Qualitative

comparisons are done mainly on real image databases from

[2, 5, 34, 6], and [22]. For fairness, quantitative compar-

isons are done only for AM-based deblurring methods.

Quantitative evaluation: We have used 28 blurred images

formed from the 4 latent images and first 7 kernels in the

benchmark dataset in [7]. We excluded other kernels since

they represent very large blurs which can lead to failure of

edge profile extraction. As is evident from the quantitative

comparisons in Figure 4, Xu + Ep outperforms competing

methods ([1, 35, 27, 3, 15, 32, 7, 37]) and is comparable or

even better than state-of-the-art ([22]).

Synthetic example: Figure 3 shows a synthetic example

on non-uniform deblurring. This is an ideal example for

edge profile based deblurring, because of abundant avail-

ability of edge profiles spanning all orientations. This en-

ables EpAlone Fig. 3(d) to perform better than the compet-

ing methods. Fig. 3(e) is the result from Xu + Ep, which

gives the best result of all.

Real examples: We give few representative examples on

deblurring here (Fig. 5). More examples are provided in

the supplementary. For completeness and to demonstrate

the potential of EpAlone, we have included the results from

EpAlone for the application of blind deblurring. Note that

in most of the examples, EpAlone by itself deliver good

quality output, although it uses only edge profiles for CME.

Our proposed approach (Xu + Ep) is able to give results

with comparable or better quality to the state-of-the-art for

all examples. A visual comparison also reveals that Xu +

Ep is able to integrate the strength of [37] and EpAlone to

achieve the best performance. For the examples in Fig. 3

and Fig. 5, [37] (Fig. 3(e), Fig. 5(b)) leaves residual blur

in the estimated latent image, whereas EpAlone (Fig. 3(f),

Fig. 5(d)) produces ringing artifacts while trying to enforce

abrupt transitions across step edges. However, Xu + Ep

(Fig. 3(g), Fig. 5(e)) is able to integrate desirable features

from both methods to capture the motion accurately.

Remarks: EpAlone performs CME faster than both Xu

+ Ep and [22], while producing promising results. At the

same time our efficient and improvised form of edge con-

straint enables EpAlone to perform better than its SI coun-

terpart in [2]. The main advantage of Xu + Ep over the

state-of-the-art work ([22]) is the significant reduction in

computational complexity, but with comparable/improved
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(a) Motion blurred image (b) Xu et al. [37] (c) Gupta et al. [5]

(d) EpAlone (e) Xu + Ep

(a)

(b)

(c)

(d)

(e)
(f) Patches from (a-e)

(g) Motion blurred image (h) Xu et al. [37] (i) Whyte et al. [34] (j) Pan et al. [22]

(k) EpAlone (l) Xu + Ep

(g)

(h)

(i)

(m) Patches from (g-i)

(j)

(k)

(l)

(n) Patches from (j-l)

Figure 5. Real example on SV deblurring using image from the datasets of Gupta et al. [5] and Pan et al. [22].

performance. Comparisons of running times are provided

in the supplementary. The main limitation of our new con-

straint is its inability to handle large blurs unlike [22].

7. Conclusions

In this paper, we investigated the relation between edge
profiles present in a motion blurred image and the under-
lying camera motion. We proposed a method (EpAlone)
for direct CME from edge profiles to aid applications where
typical AM frameworks are inapt. To highlight the impor-
tance of our new edge constraint for applications that ac-
tually favor AM, we incorporated it into an existing blind
deblurring framework and demonstrated improved perfor-

mance. Experiments reveal that our proposed approach (Xu
+ Ep) yields state-of-the-art results for the blind deblurring
problem, with significant improvements in speed-up. As
future work, it will be interesting to use the results devel-
oped in our paper (directly or indirectly) for other important
applications such as CRF estimation, normal estimation,
depth-aware deblurring, rolling shutter motion deblurring
etc.

References

[1] S. Cho and S. Lee. Fast motion deblurring. In ACM Transac-

tions on Graphics (TOG), volume 28, page 145. ACM, 2009.

1, 7

4454



[2] T. S. Cho, S. Paris, B. K. Horn, and W. T. Freeman. Blur

kernel estimation using the radon transform. In Computer

Vision and Pattern Recognition (CVPR), 2011 IEEE Confer-

ence on, pages 241–248. IEEE, 2011. 1, 2, 3, 4, 7

[3] R. Fergus, B. Singh, A. Hertzmann, S. T. Roweis, and W. T.

Freeman. Removing camera shake from a single photograph.

In ACM Transactions on Graphics (TOG), volume 25, pages

787–794. ACM, 2006. 1, 7

[4] A. Goldstein and R. Fattal. Blur-kernel estimation from spec-

tral irregularities. In European Conference on Computer Vi-

sion, pages 622–635. Springer, 2012. 1

[5] A. Gupta, N. Joshi, C. L. Zitnick, M. Cohen, and B. Curless.

Single image deblurring using motion density functions. In

European Conference on Computer Vision, pages 171–184.

Springer, 2010. 1, 2, 3, 4, 7, 8

[6] S. Harmeling, H. Michael, and B. Schölkopf. Space-

variant single-image blind deconvolution for removing cam-

era shake. In Advances in Neural Information Processing

Systems, pages 829–837, 2010. 7

[7] M. Hirsch, C. J. Schuler, S. Harmeling, and B. Schölkopf.

Fast removal of non-uniform camera shake. In 2011 Inter-

national Conference on Computer Vision, pages 463–470.

IEEE, 2011. 1, 6, 7

[8] M. Hirsch, S. Sra, B. Schölkopf, and S. Harmeling. Efficient

filter flow for space-variant multiframe blind deconvolution.

In CVPR, volume 1, page 2, 2010. 5

[9] J. Jia. Single image motion deblurring using transparency.

In 2007 IEEE Conference on Computer Vision and Pattern

Recognition, pages 1–8. IEEE, 2007. 1

[10] N. Joshi, R. Szeliski, and D. J. Kriegman. Psf estimation

using sharp edge prediction. In Computer Vision and Pattern

Recognition, 2008. CVPR 2008. IEEE Conference on, pages

1–8. IEEE, 2008. 1

[11] N. Joshi, C. L. Zitnick, R. Szeliski, and D. J. Kriegman. Im-

age deblurring and denoising using color priors. In Computer

Vision and Pattern Recognition, 2009. CVPR 2009. IEEE

Conference on, pages 1550–1557. IEEE, 2009. 1

[12] P. Kakar, N. Sudha, and W. Ser. Exposing digital image forg-

eries by detecting discrepancies in motion blur. IEEE Trans-

actions on Multimedia, 13(3):443–452, 2011. 1
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