
Learning random-walk label propagation

for weakly-supervised semantic segmentation

Paul Vernaza Manmohan Chandraker

NEC Laboratories America, Media Analytics Department

10080 N Wolfe Road, Cupertino, CA 95014

{pvernaza,manu}@nec-labs.com

Abstract

Large-scale training for semantic segmentation is chal-

lenging due to the expense of obtaining training data for

this task relative to other vision tasks. We propose a novel

training approach to address this difficulty. Given cheaply-

obtained sparse image labelings, we propagate the sparse

labels to produce guessed dense labelings. A standard

CNN-based segmentation network is trained to mimic these

labelings. The label-propagation process is defined via

random-walk hitting probabilities, which leads to a differ-

entiable parameterization with uncertainty estimates that

are incorporated into our loss. We show that by learning

the label-propagator jointly with the segmentation predic-

tor, we are able to effectively learn semantic edges given

no direct edge supervision. Experiments also show that

training a segmentation network in this way outperforms

the naive approach.

1. Introduction

We consider the task of semantic segmentation, which

is to learn a predictor capable of accurately assigning a se-

mantic label to each pixel in an image. As with many other

popular vision problems, convolutional neural nets (CNNs)

have emerged as the leading tool to solve semantic segmen-

tation problems, in part due to their ability to leverage large

datasets effectively. However, datasets for semantic seg-

mentation remain orders of magnitude smaller than for tasks

such as classification and detection, due chiefly to the much

higher annotation expense of this task.

To ease the annotation burden, and in line with previous

work [1, 11], we propose a method for training CNN-based

semantic segmentation networks given sparse annotations,

such as the scribbles depicted in Fig. 1, which also depicts

our proposed training strategy. The idea of our method

is to learn mutually-consistent networks for propagating

the sparse labels to unlabeled points, and predicting the

input
image

sparse
training
labels

predicted
segmentation

propagated
labels

Arbitrary
segmentation
net

Semantic edge
predictor

Random-walk label propagator

Consistency
loss

training time only

Figure 1: Overview of proposed training method.

true labeling given the image alone. Optimizing a mutual-

consistency objective obviates the need for dense (or, fully-

labeled) supervision. A key innovation of our approach is

proposing to use a specific, probabilistic model of sparse

label propagation that is a differentiable function of seman-

tic boundary predictions. As it is differentiable, minimiz-

ing our loss via gradient-based methods results in simulta-

neous learning of an image-to-semantic-boundary predictor

and an image-to-semantic-segmentation predictor, despite

having no direct observations of semantic edges.

Our method is comparable to recent work by Lin et

al. [11], which proposes alternating between propagating

sparse labels using a CRF defined over superpixels, and

17158

Table 1: Notation

X ⇢ Z
2 set of all pixel locations

X̂ ⇢ X set of labeled pixels

L set of semantic labels

y : X ! L a semantic labeling function

ŷ : X̂ ! L a sparse labeling

I a generic image

✓, φ predictor parameters

∆n n-dim. probability simplex

Qθ,I : X ! ∆|L| label predictor

Bφ,I : X ! R
+ boundary predictor

Ξ ⇢ Z
+ ! X set of paths across image

⇠ 2 Ξ a random walk

⌧ : Ξ ! Z
+ path stopping time

Pa|b 2 ∆ distribution of a given b
δi 2 {0, 1}|δi| \∆|δi| Kronecker delta vector

H(p) Shannon entropy of p
H(p, q) cross-entropy of p, q
KL(p k q) KL-divergence of p, q

training a CNN to predict the labels thus inferred. A disad-

vantage of this approach relative to ours is that [11] employs

a notion of label smoothness that is non-adaptive: specifi-

cally, it is assumed that labels are constant within super-

pixels, and the CRF binary potentials are not learned. This

ultimately places an artificial upper bound on the accuracy

of the training data observed by the CNN—an upper bound

that never improves as more data is collected. By contrast,

by expressing label propagation in terms of a learned se-

mantic boundary predictor, we are able to learn a concept

of label propagation that is entirely data-driven, enabling

our method to scale fully with the data. Furthermore, the

probabilistic nature of our label propagation method allows

us to obtain uncertainty estimates that are directly incorpo-

rated into our learning process, mitigating the possibilty of

training on propagated labels that are incorrect.

A crucial technical component of our approach is defin-

ing the label propagation process in terms of random-walk

hitting probabilities [6], which enables efficient inference

and gradient-based learning. For this reason, we refer to

our approach as RAWKS, a contraction of RAndom-walk

WeaKly-supervised Segmentation.

2. Method

Given densely labeled training images, typical ap-

proaches for deep-learning-based semantic segmentation

minimize the following cross-entropy loss [12, 3]:

min
θ2Θ

X

x2X

H(δy(x) , Qθ,I(x)), (1)

where δy(x) 2 ∆|L| is the indicator vector of the ground

truth label y(x) and Qθ,I(x) is a label distribution predicted

by a CNN with parameters ✓ evaluated on image I at loca-

tion x. See Table 1 for notation. In our case, dense labels

y(x) are not provided: we only have labels ŷ provided at a

subset of points X̂ . Our solution is to simultaneously infer

the dense labeling y given the sparse labeling ŷ and use the

inferred labeling to train Q. To achive this, we propose to

train our predictor to minimize the following loss:

min
θ,φ

X

x2X

H(Py(x)|ŷ,Bφ,I
, Qθ,I(x)). (2)

Here, Q is a predictor of the same form as before, while

Py(x)|ŷ,Bφ,I
is a predicted label distribution at x, con-

ditioned on predicted semantic boundaries Bφ,I and the

sparse labels. Bφ,I is assumed to be a CNN-based bound-

ary predictor, in a similar vein as [2, 14]. See Fig. 1 for a

graphical overview of our model.

The key to our method is the definition of the propagated

label distributions Py|ŷ,Bφ,I
. As in prior work on interactive

segmentation [6], we define these distributions in terms of

random-walk hitting probabilities, which can be computed

analytically, and which allows us to compute the deriva-

tives of the propagated label probabilities with respect to the

predicted boundaries. This enables us to minimize (2) by

pure backpropagation, without tricks such as the alternating

optimization methods employed in prior weakly-supervised

segmentation methods [4, 11].

To elaborate, we first define the set of all 4-connected

paths on the image that end at the first labeled point en-

countered:

Ξ = {(⇠0, ⇠1, . . . ,⇠τ(ξ)) | 8t, ⇠t 2 X, k⇠t+1 − ⇠tk1 = 1,

⇠τ(ξ) 2 X̂, 8t0 < ⌧(⇠) , ⇠t0 /2 X̂}. (3)

We now assign each path ⇠ 2 Ξ a probability that decays

exponentially as it crosses boundaries:

P (⇠) / exp

0

@−

τ(ξ)−1
X

t=0

Bφ,I(⇠t)

1

A , (4)

where Bφ,I is assumed to be a nonnegative boundary score

prediction. High- and low-probability paths under this

model are illustrated in Fig. 2b. Given sparse labels ŷ, the

probability that a pixel x has label y0 is then defined as the

probability that a path starting at x eventually hits a point

labeled y0, given the distribution over paths (4):

Py(x)|ŷ,Bφ,I
(y0) = P ({⇠ 2 Ξ | ⇠0 = x, ŷ(⇠τ(ξ)) = y0}).

(5)

This quantity can be computed efficiently by solving a

sparse linear system, as described in Sec. 2.2. The random-

walk model is illustrated in Fig. 2a. Any pixel in the region

7159

propagated labels
learned random walk

costs and labels

sparse labels

(i)

(ii)(iii)

(a)

high-probability paths low-probability paths
learned random walk costs

(black = high cost)

(b)

Figure 2: Illustration of random-walk-based model for

defining label probabilities based on boundaries and sparse

labels.

Boundaries

Sparse
labels

Dense
labels

Image

Figure 3: Independence assumptions as a graphical model

labeled (ii), for example, is very likely to be labeled dog

instead of chair or background, because any path of signif-

icant probability starting in (ii) will hit a pixel labeled dog

before it hits a pixel with any other label.

To recap, the overall architecture of our method is sum-

marized in Fig. 1. At training time, an input image is passed

to an arbitrary segmentation predictor Qθ,I and an arbirtary

semantic edge predictor Bφ,I . The semantic edge predic-

tions and sparse training labels ŷ are passed to a module

that computes propagated label probabilities Py|ŷ,B using

the random-walk model described above. The propagated

label probabilities P and the output of the predictor Q are

then passed to a cross-entropy loss H(P,Q), which is min-

imized in the parameters ✓ and φ via backpropagation. At

test time, Q is evaluated and used as the prediction. P is not

evaluated at test time, since labels are not available.

2.1. Probabilistic justification

The proposed loss function (2) arises from a natural

probabilistic extension of (1) to the case where dense labels

are unobserved. Specifically, we consider marginalizing (1)

over the unobserved dense labels, given the observed sparse

labels. This requires us to define P (y | ŷ, I). We submit

that a natural way to do so is to introduce a new variable B
representing the image’s semantic boundaries. This results

in the proposed graphical model in Fig. 3 to represent the

independence structure of y, ŷ, B, I .

It is then straightforward to show that (2) is equivalent

to marginalizing (1) with respect to a certain distribution

P (y | ŷ, I), after making a few assumptions. First, the

conditional independence structure depicted in Fig. 3 is as-

sumed. y(x) and y(x0) are assumed conditionally indepen-

dent given ŷ, B, 8x 6= x0 2 X , which allows us to specify

P (y | ŷ, B) in terms of marginal distributions and simpli-

fies inference. Finally, B is assumed to be a deterministic

function of I , defined via parameters φ.

We note that the conditional independence assumptions

made in Fig. 3 are significant. In particular, y is assumed

independent of I given ŷ and B. This essentially implies

that there is at least one label for each connected compo-

nent of the true label image, since knowing the underlying

image usually does give us information as to the label of

unlabeled connected components. In practice, strictly label-

ing every connected component is not necessary. However,

training data that egregiously violates this assumption will

likely yield poor results.

2.2. Random-walk inference

Key to our method is the efficient computation of the

random-walk hitting probabilities (5). It is well-known that

such probabilities can be computed efficiently via solving

linear systems [6]. We briefly review this result here.

The basic strategy is to compute the partition function

Zxl, which sums the right-hand-side of (4) over all paths

starting at x and ending in a point labeled l. We can then

derive a dynamic programming recursion expressing Zxl in

terms of the same quantity at neighboring points x0. This re-

cursion defines a set of sparse linear constraints on Z, which

we can then solve using standard sparse solvers.

We first define Ξxl := {⇠ 2 Ξ | ⇠0 = x, ŷ(⇠τ(ξ)) = l}.

Zxl is then defined as

Zxl :=
X

ξ2Ξxl

exp

0

@−

τ(ξ)−1
X

t=0

Bφ,I(⇠t)

1

A . (6)

The first term in the inner sum can be factored out by intro-

ducing a new summation over the four nearest neighbors of

x, denoted x0 ⇠ x, easily yielding the recursion

Zxl = exp(−Bφ,I(x))
X

x0⇠x, ξ2Ξx0l

exp

0

@−

τ(ξ)−1
X

t=1

Bφ,I(⇠t)

1

A .

= exp(−Bφ,I(x))
X

x0⇠x

Zx0l. (7)

7160

Boundary conditions must also be considered in order to

fully constrain the solution. Paths exiting the image are as-

sumed to have zero probability: hence, Zxl := 0, 8x /2 X .

Paths starting at a labeled point x 2 X̂ immediately termi-

nate with probability 1; hence, Zxl := 1, 8x 2 X̂ . Solving

this system yields a unique solution for Z, from which the

desired probabilities are computed as

Py(x)|ŷ,Bφ,I
(y0) =

Zxy0

P

l2L Zxl

. (8)

2.3. Random-walk backpropagation

In order to apply backpropagation, we must ultimately

compute the derivative of the loss with respect to a change

in the boundary score prediction Bφ,I . Here, we focus on

computing the derivative of the partition function Z with re-

spect to the boundary score B, the other steps being trivial.

Since computing Z amounts to solving a linear sys-

tem, this turns out to be fairly simple. Let us write the

constraints (7) in matrix form Az = b, such that A is

square, zi := Zxi
(assigning a unique linear index i to

each xi 2 X , and temporarily omitting the dependence on

l), and the ith rows of A, b correspond to the constraints

CiZxi
=

P

x0⇠xi
Zx0 , Zxi

= 0, or Zxi
= 1 (as appropri-

ate), where Ci := exp(Bφ,I(xi)). Let us consider the effect

of adding a small variation ✏V to A, and then re-solving the

system. It can be shown that

(A+ ✏V)−1b = z − ✏A−1V z +O(✏2). (9)

Substituting the first-order dependence on V into a Taylor

expansion of the loss L yields:

L((A+ ✏V)−1b) = L(z)−

⌧

dL

dz
, ✏A−1V z

〉

+O(✏2)

= L(z)−

⌧

A−1| dL

dz
z|, ✏V

〉

+O(✏2).

A first-order variation of Ci corresponds to Vi = −δii,
which implies that

dL

dCi

=

✓

A|−1 dL

dz

◆

i

zi. (10)

In summary, this implies that computing the loss derivatives

with respect to the boundary score can be implemented ef-

ficiently by solving the sparse adjoint system A| dL
dC = dL

dz ,

and multiplying the result pointwise by the partition func-

tion z, which in turn allows us to efficiently incorporate

sparse label propagation as a function of boundary predic-

tion into an arbitrary deep-learning framework.

2.4. Uncertainty-weighting the loss

An advantage of our method over prior work is that the

random-walk method produces a distribution over dense la-

belings Py|ŷ,Bφ,I
given sparse labels, as opposed to a MAP

Image Boundary scores

Uncertainty weightsRandom walk
segmentation

Figure 4: Visualization of loss uncertainty weights (blue =

low weight, red = high weight)

estimate. These uncertainty estimtates can be used to down-

weight the loss in areas where the inferred labels may be

incorrect, as illustrated in Fig. 4. In this example, the

boundary predictor failed to correctly predict parts of ob-

ject boundaries. In the vicinity of these gaps, the label dis-

tribution is uncertain, and the MAP estimate is incorrect.

However, we can mitigate the problem by down-weighting

the loss proportional to the uncertainty estimate.

More concretely, we actually minimize the following

modification of the loss (2):

X

x2X

w(x)KL(Py(x)|ŷ,Bφ,I
k Qθ,I(x)) +H(Py(x)|ŷ,Bφ,I

),

(11)

where we define w(x) := exp(−↵H(Py(x)|ŷ,Bφ,I
)), for

some fixed parameter ↵. This loss reduces to (2) for the

case w(x) = 1. Although the KL component of the loss

can be avoided by increasing the prediction entropy, the ex-

plicit entropy regularization term prevents trivial solutions

of very large entropy everywhere.

3. Related work

The method most comparable to ours is the work of

Lin et al. [11]. In contrast to [11], our method features

fully-differentiable, gradient-based training (as opposed to

alternating optimization); we learn an inductive rule for

predicting boundaries and propagating labels, as opposed

to using non-adaptive superpixels and a CRF with non-

adaptive binary potentials, which enables us to adapt to

large datasets in a data-driven way; and we employ a prob-

abilistic notion of label propagation that enables us to de-

fine an uncertainty-weighted loss that mitigates the possi-

bilty of training on propagated labels that are incorrect. An-

other notable method in the same vein as [11] is the BoxSup

7161

method [4], which also employs alternating optimization,

but uses bounding-box annotations as weak supervision.

Our method was initially inspired by [1], which intro-

duced the idea of training on what we refer to here as sparse

labels as a source of weak supervision. Instead of attempt-

ing to directly propagate labels, as we do, that method lever-

ages a notion of objectness to mitigate overfitting. A few

other works have proposed different modes of weak super-

vision for segmentation. Notably, [15] and [13] both model

weak supervision as imposing linear constraints to be sat-

isfied by the predictor, resulting in models trained by al-

ternating optimization. Our method can be viewed from a

similar perspective, since we also impose our weak super-

vision via linear constraints (7); however, our constraints

explicitly model the process of spatial label propagation,

whereas the constraints proposed in [15, 13] model only

aggregate statistics over regions, and hence make no pro-

vision for learning boundaries as we do in this work. Fur-

thermore, our model is differentiable and can be optimized

via gradient-based methods.

To the extent that it learns semantic edges with a CNN,

our method is similar to previous works such as [14], which

also learns semantic edges using a CNN. However, [14]

achieves this using direct supervision of edges—which we

do not require—and does not jointly train a semantic la-

beler, as we do. Learning edges with a weaker form of edge

supervision is proposed in [10]; however, this method re-

lies on a combination of heuristic boundary detectors and

bounding boxes for supervision. To reiterate, our method

works without any heuristic source of boundaries as input.

Another vein of prior work relates to some form of joint

reasoning about boundaries and segments. Most promi-

nently, random walks were previously applied to interactive

segmentation in [6]. However, that work did not consider

learning these random walks by learning boundary scores,

as we do, nor did it consider the task of semantic image seg-

mentation in general. More recently, [2] proposed a method

to jointly learn semantic edges and a CNN-based semantic

labeler in an gradient-based learning framework. However,

their method applies only to the strong-supervision case,

and cannot leverage sparse annotations of the kind we em-

ploy here.

4. Experiments

We implemented RAWKS in the Caffe [9] framework.

The semantic-boundary-prediction network Bφ,I and the

semantic-segmentation network Qθ,I were both imple-

mented as fully-convolutional CNNs, based on the same

ResNet-101 [8] architecture. The final average-pooling and

fully-connected layers were removed, and features from

the last resulting layer were upsampled and combined with

intermediate-layer features to produce a 4x-downsampled

output for both the semantic boundary and label predictions.

Both networks were initialized from a model trained for

classification on the ImageNet 2012 dataset. We applied no

data augmentation techniques in training any of the meth-

ods.

RAWKS was trained on the publicly available scribble

annotations provided by [11]. We used the same train-

ing and validation splits as [11], for both the PASCAL

VOC 2012 and PASCAL CONTEXT datasets: for VOC,

the validation set consisted of the VOC 2012 validation set,

while the training set consisted of all other images labeled

in either the VOC 2012 dataset or the PASCAL Seman-

tic Boundary dataset [7] (10582 training images, and 1449

validation images). We trained models for each of these

datasets independently.

We evaluated the performance of both the semantic-

segmentation network Q and the label-propagation network

P (propagating the sparse labels given the learned bound-

aries). To summarize, evaluating the predicted labels Q
on the validation set, RAWKS slightly underperformed the

published results of [11] on VOC 2012, while slightly out-

performing [11] on CONTEXT. Our other major observa-

tion was that the propagated labels P on the training set

were approximately as accurate as the best possible label-

ing of a superpixel segmentation of the images.

To elaborate, in Table 2, MIOU refers to the mean-

intersection-over-union metric, while w/ CRF refers to the

same metric evaluated after post-processing the results with

a fully-connected CRF, as in [11]. RAWKS Qθ,I refers to

the evaluation of the predicted labels Q on the validation

set given the image alone, after jointly training P and Q via

SGD. RAWKS train P,Q then Q also refers to evaluation of

Q, but with a slightly different training protocol: in this case

after jointly training P and Q with SGD, Q was fine-tuned

with P fixed. RAWKS training Py|ŷ,B , 0% abstain refers to

evaluation of P on the training set, given the sparse train-

ing labels and learned boundaries Bφ,I . RAWKS training

Py|ŷ,B , 6% abstain consists of the same evaluation, but al-

lowing P to abstain from prediction on 6% of the pixels,

which (for this particular model) corresponds to abstaining

on all pixels with a confidence score w(x) below 0.5 (c.f.

Sec. 2.4). The next section of Table 2 reports baselines:

sparse-loss baseline consists of training the same base net-

work Q, but using loss (1) (i.e., without P), evaluating it

only at the sparse locations X̂ . train on dense ground truth

is the result we obtain training our base network Q on the

dense ground-truth training data. ScribbleSup refers to the

result reported by [11], which we report here verbatim. We

note that [11] used a different base segmentation network

(DeepLab) than we used in our experiments.

The last section of Table 2 reports statistics for base-

lines meant to represent best-case performance bounds for a

superpixel-based method such as [11]. These were obtained

by segmenting the input images using the method [5] (with

7162

author-suggested parameters), and labeling the resulting su-

perpixels in different ways. SPOPT corresponds to labeling

each superpixel with the majority label from the ground-

truth dense segmentation. SPCON differs from SPOPT only

on superpixels containing scribble annotations: to these,

SPCON assigns the majority label from the scribbles con-

tained within. Train on SPOPT/SPCON refer to training

predictors Q using the labelings of SPOPT and SPCON,

respectively. These results are interesting for a number of

reasons. First, the propagated labelings P that we deduce

in the course of training, are nearly as good (VOC) or better

(CONTEXT) than the best possible results obtainable using

superpixels. Second, we see that training with our propa-

gated labelings P is competitive with training on optimal

superpixel labelings. Finally, we emphasize that while the

superpixel baselines cannot improve with training data (as

they are not trained), our label propagation model is natu-

rally refined as we train on larger datasets.

In relative terms, RAWKS performed better on the CON-

TEXT dataset, as evidenced in Table 3. One potential rea-

son for this is the greater number of classes for this dataset

(60 vs. 21 for VOC), which naturally calls for finer bound-

aries. Since our method is able to adaptively learn bound-

aries suited to the task, while [11] uses non-adaptive heuris-

tics to generate superpixels, this may account for the bet-

ter relative performance of RAWKS in this context. We

also hypothesize that it is easier to learn semanic bound-

aries when there are a greater number of classes, because

low-level edges and features become a more informative

cue in this case. Surprisingly, our dense ground-truth base-

line performed significantly worse than RAWKS; we hy-

pothesize this is due to overfitting, a consequence of the

smaller amount of training data and increased number of

classes in CONTEXT, exacerbated by our use of the very-

deep ResNet model. Joint training of the propagator net-

work P in RAWKS seems to have a regularizing effect that

may have prevented overfitting to some extent.

Qualitative validation-set results are shown in Fig. 5 for

the VOC 2012 dataset, while CONTEXT training-set re-

sults are shown in Fig. 6. The training-set results of Fig. 6

demonstrate that RAWKS is able to deduce high-quality se-

mantic boundaries, thereby producing propagated labelings

P that are a close approximation to the ground truth dense

labelings (which are not used at training time, to be clear).

In the validation-set results of Fig. 5, the loss weights w(x)
and propagated labels P are shown in addition to the pre-

dictions Q—to be clear, these depend on the sparse labels

for these specific examples, which were not used to train

this model. Here we remark that our semantic boundary

predictions also generalize well to the validation set. Al-

though we did not train on these images, we also observe

that had we done so, the loss weights would have behaved

appropriately, down-weighting the loss in regions where the

Method MIOU w/ CRF

RAWKS Qθ,I 57.1 60.0

RAWKS train P,Q, then Q 59.5 61.4

RAWKS training Py|ŷ,B , 0% abstain 75.8 .

RAWKS training Py|ŷ,B , 6% abstain 81.2 .

Sparse-loss baseline 55.8

Train on dense ground truth 66.3 68.8

ScribbleSup (reported) . 63.1

Opt. superpixel labels (SPOPT) 83.1 .

Opt. consistent s-p. labels (SPCON) 76.5 .

Train on SPOPT 62.8 .

Train on SPCON 61.1 .

Table 2: Results on VOC 2012 validation set

Method MIOU w/ CRF

RAWKS Qθ,I 36.0 37.4

RAWKS training Py|ŷ,B , 0% abstain 75.5 .

Sparse-loss baseline 26.6 .

Train on dense ground truth 31.7 32.4

ScribbleSup (reported) . 36.1

Opt. consistent s-p. labels (SPCON) 70.2 .

Table 3: Results on CONTEXT validation set

propagated labels are incorrect. This seems to happen most

often in regions with very fine boundaries (such as the mast

of the boat and the airplane’s wing), where our limited res-

olution sometimes causes missed boundaries.

In general, we note that subjectively, resolution seemed

to be a limiting factor in the accuracy of our boundary

prediction and label propagation steps. We used quarter-

resolution outputs (typicaly around 128x96 pixels) for these

steps in order to minimize the computational cost of com-

puting random-walk hitting probabilities. An average

forward-backwards pass of the entire network took about

1.1 s per image, with about 800 ms of that spent solving for

the random-walk hitting probabilities. This layer was im-

plemented using a CPU-based sparse linear system solver,

whereas the rest of the network was run on the GPU (an

NVIDIA GTX 1080). We anticipate that implementing this

layer using GPU operations will allow us to increase the

resolution of these critical steps, which will in turn lead to

increased prediction accuracy.

5. Conclusions

We have presented a novel approach to mitigating the

expense of procuring labeled data in semantic segmenta-

tion, through a framework that utilizes only sparse clicks

or scribbles for training. This has a significant impact

on the possibilities for semantic segmentation—for a given

dataset, one may obtain competitive labels at a fraction of

7163

predicted
boundaries

image loss
weights

predictor
output Q

propagated
labels P

dense
label GT

Figure 5: Validation set results on VOC 2012 dataset

the cost and conversely, for a given budget, one may ob-

tain labeled data at a much larger scale. Our main tech-

nical contribution is a random-walk based label propaga-

tion mechanism, which is shown to be differentiable and

usable in powerful deep neural network architectures for

semantic segmentation. We achieve this through a novel

predictor-propagator paradigm, which produces uncertainty

estimates for inferred dense labels given sparse labels.

We demonstrate encouraging results on challenging bench-

marks. More importantly, we argue that our framework has

inherent advantages over prior works, since our label propa-

gation is not artificially upper-bounded by superpixel base-

lines, rather, can keep improving with larger-scale training

data. Also, we note that our contribution is equally valid

for any state-of-the-art CNN-based semantic segmentation

engines. In future work, we will explore other state-of-the-

art segmentation architectures and incorporate other forms

of weak supervision such as bounding boxes, which might

make our framework compatible with existing object detec-

tors.

7164

predicted
boundaries

image sparse
labels

predictor
output Q

propagated
labels P

dense
label GT

Figure 6: Training results on CONTEXT dataset

7165

References

[1] A. Bearman, O. Russakovsky, V. Ferrari, and L. Fei-Fei.

What’s the point: Semantic segmentation with point super-

vision. arXiv preprint arXiv:1506.02106, 2015. 1, 5

[2] L.-C. Chen, J. T. Barron, G. Papandreou, K. Murphy, and

A. L. Yuille. Semantic image segmentation with task-specific

edge detection using cnns and a discriminatively trained do-

main transform. In Conference on Computer Vision and Pat-

tern Recognition (CVPR), 2016. 2, 5

[3] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and

A. L. Yuille. Semantic image segmentation with deep con-

volutional nets and fully connected crfs. In ICLR, 2015. 2

[4] J. Dai, K. He, and J. Sun. Boxsup: Exploiting bounding

boxes to supervise convolutional networks for semantic seg-

mentation. In Proceedings of the IEEE International Con-

ference on Computer Vision, pages 1635–1643, 2015. 2, 5

[5] P. F. Felzenszwalb and D. P. Huttenlocher. Efficient graph-

based image segmentation. International Journal of Com-

puter Vision, 59(2):167–181, 2004. 5

[6] L. Grady. Random walks for image segmentation. IEEE

transactions on pattern analysis and machine intelligence,

28(11):1768–1783, 2006. 2, 3, 5

[7] B. Hariharan, P. Arbeláez, L. Bourdev, S. Maji, and J. Ma-

lik. Semantic contours from inverse detectors. In 2011 In-

ternational Conference on Computer Vision, pages 991–998.

IEEE, 2011. 5

[8] K. He, X. Zhang, S. Ren, , and J. Sun. Deep residual learning

for image recognition. In Proceedings of the IEEE Confer-

ence on Computer Vision and Pattern Recognition, 2016. 5

[9] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Gir-

shick, S. Guadarrama, and T. Darrell. Caffe: Convolutional

architecture for fast feature embedding. arXiv:1408.5093,

2014. 5

[10] A. Khoreva, R. Benenson, M. Omran, M. Hein, and

B. Schiele. Weakly supervised object boundaries. In CVPR,

2016. 5

[11] D. Lin, J. Dai, J. Jia, K. He, , and J. Sun. Scribble-

sup: Scribble-supervised convolutional networks for seman-

tic segmentation. In Conference on Computer Vision and

Pattern Recognition (CVPR), 2016. 1, 2, 4, 5, 6

[12] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional

networks for semantic segmentation. In CVPR, pages 3431–

3440, 2015. 2

[13] D. Pathak, P. Krahenbuhl, and T. Darrell. Constrained con-

volutional neural networks for weakly supervised segmenta-

tion. In Proceedings of the IEEE International Conference

on Computer Vision, pages 1796–1804, 2015. 5

[14] S. Xie and Z. Tu. Holistically-nested edge detection. In The

IEEE International Conference on Computer Vision (ICCV),

December 2015. 2, 5

[15] J. Xu, A. G. Schwing, and R. Urtasun. Learning to seg-

ment under various forms of weak supervision. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 3781–3790, 2015. 5

7166

