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Abstract

Edge detection has made significant progress with the

help of deep Convolutional Networks (ConvNet). ConvNet

based edge detectors approached human level performance

on standard benchmarks. We provide a systematical study

of these detector outputs, and show that they failed to accu-

rately localize edges, which can be adversarial for tasks

that require crisp edge inputs. In addition, we propose

a novel refinement architecture to address the challeng-

ing problem of learning a crisp edge detector using Con-

vNet. Our method leverages a top-down backward refine-

ment pathway, and progressively increases the resolution of

feature maps to generate crisp edges. Our results achieve

promising performance on BSDS500, surpassing human

accuracy when using standard criteria, and largely outper-

forming state-of-the-art methods when using more strict cri-

teria. We further demonstrate the benefit of crisp edge maps

for estimating optical flow and generating object proposals.

1. Introduction

Edge detection is a well-established problem in com-

puter vision. Finding perceptually salient edges in natu-

ral images is important for mid-level vision [27]. More-

over, edge detection outputs, in terms of boundary maps,

are often used for other vision tasks, including optical

flow [30], object proposals [2] and object recognition [6].

We have witnessed a significant progress on edge detec-

tion, ever since our community embraced a learning based

approach [7]. In particular, state-of-the-art methods [39, 18]

such as Holistic Edge Detector [39] (HED), leveraging deep

ConvNet for detecting edges, achieved human level perfor-

mance on standard datasets such as BSDS500 [1].

Is edge detection a solved problem? In Figure 1(a), we

show a visualization of human labeled edges, in compari-

son to outputs from HED (the current state-of-the-art) and

PMI (designed for accurately localizing edges). While the

HED result has a higher score, the quality of the edge map is
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Figure 1. (a) Visualization of edge maps from PMI [14] and

HED [39] with input images and ground-truth edges; (b) Perfor-

mance (on the left image) drops with decreased matching distance.

With a tighter distance, the gap between PMI and HED decreases

and the gap between HED and human increases. These results

suggest that edges from HED are not well aligned with image

boundaries. We seek to improve the localization ability of Con-

vNet based edge detector in this paper.

less satisfactory—edges are blurry and do not stick to actual

image boundaries. An accurate edge detector has to balance

between “correctness” of an edge (distinguishing between

edge and non-edge pixels) and “crispness” of the boundary

(precisely localizing edge pixels) [14]. We can capture the

“crispness” by decreasing the maximal permissible distance

when matching ground-truth edges during benchmark. The

F1 score drops dramatically when we tighten the evaluation

criteria (see Figure 1(b)).

Both qualitative and quantitative results suggest that

edge maps from a ConvNet are highly “correct” yet less

“crisp”—edges are not well localized. This issue is deeply

rooted in modern ConvNet architecture [19]. First, spatial

resolution of features is drastically reduced in more dis-

criminative top layers, leading to blurred output of edges.

Second, fully convolutional architecture encourages similar

responses of neighboring pixels, and thus may fail to pro-

duce a thin edge map. Such a thick and blurred edge map
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can be adversarial for other vision tasks [14]. For example,

recent optical flow methods [29, 30] require accurate and

crisp edge inputs to interpolate sparse matching results, and

thus may have sub-optimal performance with blurry edges.

We address this challenging problem of learning a crisp

edge detector using ConvNet, and seek to improve the local-

ization ability of HED. To this end, we propose a novel

refinement architecture, inspired by the recent advance in

dense image labeling [28, 32]. Our method equips an edge

detection network with a top-down backward-refining path-

way, which progressively increases the resolution of feature

maps using efficient sub-pixel convolution [32]. The refine-

ment pathway adds additional non-linearity to the network,

further reducing the correlation between edge responses

within neighboring pixels. Our method achieves promising

results on BSDS500, surpassing human performance when

using standard criteria, and largely outperforming state-of-

the-art methods when using more strict evaluation criteria.

We also demonstrate the benefit of crisp edges for optical

flow and object proposals.

Our contributions are thus summarized into three parts.

• We provide a systematical study of edge maps from

ConvNet. We show that ConvNet is good at classifying

edge pixels yet has poor localization ability.

• We combine the refinement scheme [28] with sub-

pixel convolution [7] into a novel architecture, which is

specifically designed for learning crisp edge detector.

• Our results on BSDS500 outperform state-of-the-art

methods on all matching distances. We also show that

crisp edge maps can improve optical flow estimation

and object proposals generation.

We organize our paper as follows. Section 2 reviews

related work on edge detection. Section 3 presents our study

of edge maps from ConvNet. Section 4 details our method.

Finally, Section 5 demonstrates experimental results.

2. Related Work

There is a vast literature on the classical problem of edge

detection. A complete survey is out of scope for this paper.

We only review a subset of relevant works in this section.

Early edge detectors are manually designed to find dis-

continuities in intensity and color [11, 5, 12]. Martin et

al. [27] found that adding texture gradients significantly

improves the performance. Most recent works explore

learning based approaches for edge detection. Dollár et

al. [7] proposed a data-driven, supervised edge detector,

where detection is posed as a dense binary labeling prob-

lem with features collected in local patches. Many mod-

ern edge detectors have followed this paradigm by using

more sophisticated learning methods. For example, Lim et

al. [22] proposed to cluster human generated contours into

so called Sketch Tokens. They then learn a random forest

that maps a local patch to these tokens, which is used to

re-assemble local edges. This idea was further extended by

Dollár and Zitnick. They proposed structured random for-

est that simultaneously learns the clustering and mapping,

and directly outputs a local edge patch. Ren and Bao [38]

combined features learned from sparse coding and Support

Vector Machine (SVM) for edge detection. Their method

can be considered as a two-layer neural network.

The recent success of deep ConvNet has greatly

advanced the performance of edge detection. Xie and

Tu [39] proposed to combine fully convolutional net-

works [24] with deep supervision [20]. Their method lever-

ages features from different scales using skip-layer connec-

tions and has achieved a superior performance (within 2%
gap to human level). Kokkinos [18] further extended HED

by adding multi-instance learning, more training samples

and a global grouping step. Their results had surpassed

human performance on BSDS500, although with signifi-

cantly more training images. In addition, Maninis et al.

[25] proposed to model the orientation of edges. Li et al.

[21] presented an unsupervised learning pipeline for edge

detection. However, these results tend to emphasis on the

“correctness” of edges by selecting an optimistic matching

distance,1 and overlook the “crispness” of edges. In fact, the

performance drops dramatically when the evaluation crite-

ria is tightened. In contrast, our method builds on HED and

seeks to improve its localization ability.

Our method is motivated by Isola et al. [14]. They pro-

posed an affinity measure based on point-wise mutual infor-

mation using distributions of hand-crafted local features.

Edges are then detected using this affinity with spectral

clustering. We share the same goal of designing a crisp edge

detector yet our method and setting are completely differ-

ent. More precisely, we pursue a learning based approach

using ConvNet for crisp edges. Finally, our method is

inspired by Pinheiro et al. [28], where a refinement architec-

ture is proposed for segmenting objects. Our method adopts

the top-down pathway of [28] to label the sparse binary sig-

nals of edges. We also replace the bilinear interpolation

(deconvolution) with sub-pixel convolution [32], which is

critical for generating better-localized, sharp edge output.

3. Thick Boundaries from ConvNet

We start by looking into the output edge maps of

HED [39], a recent successful edge detector using Con-

vNet. HED predicts edge confidence at different layers of

the network, leading to a set of edge maps. These maps are

down-sampled due to successive pooling operations in the

network. Thus, they are further up-sampled to fit the input

1
4.3 pixels in a resolution of 321× 481
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Figure 2. (a) Thick and noisy edge map generated with HED [39]

before non-maximal suppression(NMS); (b) Optimal Dataset

Score (ODS) for both HED and human drop with decreased match-

ing distance on the BSDS500 test set. However, the performance

gap between HED and human increases from 2.3% to 4.7% as the

distance decreases from d to d/4.

resolution by bilinear interpolation and averaged to produce

the final edge map. We show an example of the edge map

in Figure 2(a). Although the detector achieved a ODS of

0.78 on BSDS, the visual quality of the edge map is not

satisfying. Edges look blurred and visually defective.

Why would such a blurry edge map reach a high score

in benchmark? The standard evaluation [1] iterates over all

confidence thresholds and uses bipartite graph matching to

match between a binarized edge map to ground-truth edges.

The matching is controlled by a maximal permissible dis-

tance d. A misaligned edge pixel is still considered correct

as long as its distance to the nearest ground-truth is smaller

than d pixels. With a optimistic d, we can achieve a good

score even if edges are slightly shifted.

In fact, edge detection has to balance between “correct-

ness” of an edge (distinguishing between edge and non-

edge pixels) and “crispness” of the boundary (precisely

localizing edge pixels) [14]. Crisp edges may be critical for

other vision tasks, such as optical flow or image segmenta-

tion. “Crispness” can be measured by decreasing d in the

benchmark. Human performance gradually decreases with

smaller d, as we show in Figure 2(b). However, HED out-

puts show a more drastic drop, indicating that HED edges

are not well aligned to actual image boundaries. This is in

accordance with our visual inspection of the edge map.

4. Make Convolutional Boundaries Crisp

How can we make a crisp edge map from ConvNet?

We start by analyzing the architecture of HED. Like mod-

ern ConvNets, spatial resolution of more discriminative top

layers is significantly reduced due to pooling operations.

HED further attaches a linear classifier on layers with dif-

ferent resolution, and uses bilinear interpolation (realized

as deconvolution) to up-sample their outputs to the original

resolution. This design has two major issues. First, linear

classifiers within the fully convolution architecture produce

similar responses at neighboring pixels. It is thus difficult to

distinguish an edge pixel from its neighbors. More impor-

tantly, up-sampling further blurs the edge map.

Architecture modifications are thus required for generat-

ing a crisp edge map. In this section, we address the chal-

lenging problem of designing a Crisp Edge Detector (CED)

by proposing a novel architecture. Our method supplements

HED network with a backward-refining pathway, which

progressively up-samples features using efficient sub-pixel

convolution [32]. CED is able to generate an edge map that

is better aligned with image boundaries. We present details

of CED and explain our design choices.

4.1. Architecture Overview

Figure 3 shows an overview of CED with two

major components: the forward-propagating pathway and

backward-refining pathway. The forward-propagating path-

way is similar to HED. It generates a high-dimensional

low-resolution feature map with rich semantic information.

The backward-refining pathway fuses the feature map with

intermediate features along the forward-propagating path-

way. This refinement is done multiple times by a refine-

ment module. Each time we increase the feature resolution

by a small factor (2x) using sub-pixel convolution, eventu-

ally reaching the input resolution. Details of our network

are elaborated in following subsections.

4.2. Refinement Module

The skip-layer connection provides HED the impor-

tant ability to use features at different layers for finding

edges [39]. HED simply averages independent predictions

from all side-output layers. We argue that this is not a good

design as it does not explore the hierarchical feature repre-

sentations of ConvNet. To get a better fusion of multi-layer

features, we introduce the backward-refining pathway with

refinement modules, similar to [28]. Note that our task of

detecting sparse edges is significantly different from seg-

menting objects in [28]. Thus, directly applying the same

module in [28] leads to sub-optimal performance.

The refinement module is repeated several times to pro-

gressively increase the resolution of feature maps. The key

idea is to aggregate evidences of edges across the path using
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Figure 3. Our method of Crisp Edge Detector (CED). We add a backward-refining pathway, which progressively increase the resolution of

feature maps. Our refinement module fuses a top-down feature map with feature maps on the forward pass, and up-samples the map using

sub-pixel convolution. This architecture is specially designed for generating edge maps that are well-aligned to image boundaries.

intermediate feature maps. Detailed structure of the mod-

ule is shown in the bottom part of 3. Each module fuses a

top-down feature map from the backward pathway with the

feature map from current layer in the forward pathway, and

further up-samples the map by a small factor (2x), which is

then passed down the pathway. There are two core compo-

nents in this module, namely fusion and up-sampling.

Fusion: A straightforward strategy of fusion is to

directly concatenate two feature maps. However, this is

problematic since they have different number of feature

channels. Directly concatenating the features risks drown-

ing out the lower dimensional signal. Similar to [28], we

match the number of feature channels between the two maps

through dimension reduction. This is done by reducing the

dimension of both feature maps. We then concatenate two

low-dimensional feature maps with equal channels.

We denote the number of channels of the input forward

pathway feature map as kh. After the convolutional and

ReLU operations, the channels are reduced to k
′

h
, which

is much less than kh. The same operations are conducted

to the feature map from the previous refinement module

to produce k
′

u
from ku. We concatenate the above feature

maps into a new feature map with k
′

u
+ k

′

h
channels and

reduce it to a feature map with k
′

d
channels by a 3×3 convo-

lutional layer as well. Thus, the overall computational cost

is reduced and the two input feature maps are balanced.

Up-sampling: After fusion, our refinement module

will also expand the resolution of feature maps. We up-

sample the fused feature map with a sub-pixel convolu-

tion [33]. The sub-pixel convolution, different from the

popular deconvolution for up-sampling [40, 10, 36], is a

standard convolution followed by additional rearrangement

of feature values, termed phase shift. It helps to remove the

block artifact in image super-resolution task and maintain

a low computational cost. We found that using sub-pixel

convolution is important for better localization of edges.

Supposed we have i input channels and o desired output

channels, the kernel size of a convolutional layer is denoted

as (o, i, r, c), where r and c stand for the kernel width and

kernel height respectively. Considering output feature map

with k times larger resolution than the input one, the tradi-

tional deconvolutional layer would employ the kernel size

to be (o, i, k× r, k× c). Instead of directly output enlarged

feature map through a single deconvolutional layer, the sub-

pixel convolution consists of one convolutional layer and

one following phase shift layer. The kernel size of the con-

volutional layer is (o × k2, i, r, c), thus generating feature

map with o× k2 feature channels with identical resolution.

Then we apply the phase shift to assemble the output fea-

ture map to the feature map with o feature channels but k
times larger resolution in a fixed order.

Relationship to [39] and [28]: CED subsumes

HED [39] as a special case, where 3x3 convolutions and

ReLUs are replaced by linear classifiers and progressive

up-sampling is used. Our method is different from [28]

as we replace bilinear interpolation with sub-pixel convo-

lution. This enables a more expressive model with a small

number of extra parameters. Our task of edge detection is

also different from object segmentation in [28].

4.3. Implementation Details

Our implementation builds on the publicly available

code of HED [39], using Caffe as backend [15]. For train-
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ing, we initialize the forward-propagating pathway with the

pre-trained HED model. The other layers are initialized

with Gaussian random distribution with fixed mean (0.0)

and variance(0.01). The hyper parameters, including the

initial learning rate, weight decay and momentum, are set

to 1e− 5, 2e− 4 and 0.99, respectively.

For backward-refining pathway, the number of convolu-

tional kernels is set to 256 for the top layer. This number is

decreased by half along the path. For example, the first, sec-

ond, and third top-down refinement module will have 128,

64 and 32 feature channels, respectively. Since the resolu-

tion of feature maps decreases by a factor of 2 after every

pooling operation, the sub-pixel convolution up-samples the

input feature map by 2x in each refinement module.

5. Experiments

We conduct extensive experiments to benchmark CED.

We first present our datasets and evaluation criteria. Our

experiments start with an ablation study of network archi-

tecture. We further compare our best performing method

with state-of-the-art methods on edge detection. Finally, we

plug in our method into optical flow estimation and object

proposals generation, and evaluate its benefit for each task.

5.1. Datasets and Benchmarks

We evaluate edge detectors on the widely-used Berke-

ley Segmentation Dataset and Benchmark (BSDS500)

dataset [27, 1]. It consists of 200 images for training, 100

for validation, and 200 for testing. Each image is annotated

by multiple annotators. We use the train and validation set

for training (similar to [39]) and report results on the test set.

The performance is measured by the precision/recall curve

that captures the trade-off between accuracy and noise [27].

In addition, three standard metrics are reported: fixed con-

tour threshold (ODS), per-image best threshold (OIS) and

average precision (AP).

We benchmark optical flow estimation and object pro-

posals generation method by applying our edge detector.

The optical flow estimation results are reported on MPI

Sintel dataset [4], a challenging optical flow evaluation

benchmark obtained from animated sequences, and we use

the final version with photo-realistic rendering. Similar to

[30, 21], we report Average Endpoint Error (AEE) on the

training set for optical flow estimation.

We benchmark object proposals generation on Pascal

VOC 2012 validation set (VOC12 val set) [26]. The mean

Jaccard index (mean best overlap) at instance level and class

level are reported for the evaluation, as the same metrics

in [2, 16]. More precisely, the Jaccard index at instance

level (Ji) is the mean best overlap (intersection over union)

for all the ground-truth instances in the dataset. The Jaccard

index at class level (Jc) is the mean over the ground-truth

instances within class c.

Method ODS OIS AP

HED .780 .797 .829

CED-w/o-Subpixel-w/o-Multi .793 .811 .838

CED-w/o-Multi .794 .811 .847

CED-w/o-Subpixel .800 .819 .859

CED .803 .820 .871

Table 1. Results on BSDS500 with different network architecture

settings. CED-w/o-Multi refers to CED without multi-scale test-

ing, similar for CED-w/o-Subpixel-w/o-Multi.

5.2. Ablation Study

Our first experiment is to test different network archi-

tectures of CED. We use the original HED [39] network as

our baseline. We trained different versions of CED with or

without sub-pixel convolution (CED-w/o-Subpixel by using

deconvolution instead). This is carried out to prove the

effectiveness of sub-pixel convolution. It is worth noting

that both CED and CED-w/o-Subpixel are initialized by the

same model. Moreover, we tested the multi-scale fusion

strategy for the evaluation. In this case, a testing image is

resized to three different resolutions (1/2x, 1x, 2x), which

are fed into the same network independently. Finally, we

resize the three output edge maps to the original resolution,

and average them to generate the final edge map.

In training, we adopt a modified version of consensus

sampling strategy [39] to prevent the problematic conver-

gence behavior. A pixel is assigned positive label if it is

labeled as edge by at least three annotators. Pixels have not

been labeled by any annotators are treated as negative. The

rest of the pixels are ignored during training (by blocking

their gradients). We also augment the data by rotating, crop-

ping and multi-scale resizing. Our results are summarized

in Table 1. Our refinement module improves over the base-

line HED by 1%, sub-pixel convolution further boosts the

performance by 1.4% and multi-scale testing adds another

0.9%. Our full model improves the ODS from 0.780 to

0.803, slightly higher than human performance of 0.8027.

These results demonstrate the effectiveness of CED.

5.3. Boundary Detection

We further compare the best performing version of

CED to state-of-the-art methods in Table 2. Fig. 4 shows

Precision-Recall curves of all methods for comparison.

Without multi-scale testing, CED already achieves better

results than the top-performing method [23] in all 3 met-

rics. Integrated with the multi-scale testing, CED achieves

a further improvement, enhancing the ODS by 1.1%, OIS

by 1.0% and AP by 5.3% in comparison to [23]. This result

also surpasses the human benchmark on the BSDS500

dataset with ODS 0.8027. We note that the current record is

from DeepBounaries [18], which used extra training sam-
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Figure 4. Precision/Recall curves of different methods on

BSDS500 dataset using standard evaluation criteria. CED is close

to the best record by DeepBoundaries, which uses extra training

data and post-processing steps. Simply augmenting training data

as DeepBoundaries, without any post-processing, CED-VOC-aug

achieves the best result.

Method ODS OIS AP

Human .8027 .8027 -

gPb-owt-ucm[1] .726 .757 .696

SE-Var[9] .746 .767 .803

PMI[14] .741 .769 .799

MES[34] .756 .776 .756

DeepEdge [17] .753 .769 .784

MSC [35] .756 .776 .787

CSCNN [13] .756 .775 .798

DeepContour [31] .757 .776 .790

HFL [3] .767 .788 .795

HED [39] .788 .808 .840

RDS [23] .792 .810 .818

DeepBounaries [18] .813 .831 .866

CED-w/o-Multi .794 .811 .847

CED .803 .820 .871

CED-VOC-aug .815 .833 .889

Table 2. Comparison to the state-of-arts on BSDS500 dataset.

ples (> 10K images in VOC) and post-processing steps

of global grouping. After simply augmenting the standard

BSDS500 training dataset with VOC images as [18], with-

out any post-processing steps, CED gives better results with

ODS 0.815. The new form of CED is denoted as CED-

VOC-aug.

We further benchmark the “crispness” of edges from

CED. We report quantitative evaluation results by varying

the matching distance d. The selected evaluation method

should indicate whether the object contours can be pre-

cisely localized by tightened criteria. We evaluate CED

on the following settings of d: d0, d0/2, and d0/4, where

d0 = 4.3 pixels. We compare the results with HED [39] and

PMI [14], which also aims for generating crisp edges. The

results are reported in the plot in Figure 6.

The performance of all methods decreases when d
decreases. The gap between HED and PMI is getting closer

with a smaller d. In contrast, the gap between CED and

the two baselines stays fairly consistent. In fact, the ODS

gap between CED and HED increases from 2.3% to 2.8%,

the OIS gap increases from 2.3% to 2.9% and the AP gap

increases from 4.2% to 9.1%. In addition, CED achieves

ODS=0.606 at the setting of d0/4, approaching human

level performance (0.625), and outperforming the methods

in [14, 39] by a large margin. The results suggest that CED

produces a crisp edge map.

Finally, Figure 5 shows a comparison of edge maps

from PMI, HED and CED, before non-maximal suppression

(NMS). Even without the standard non-maximal suppres-

sion (NMS), our method eliminates most blurry and noisy

boundaries significantly. We observe that CED can produce

cleaner, thinner and crisper image boundaries.

5.4. Optical Flow with Crisp Boundaries

To analyze the benefit of crisp edges, we plug in CED

results for optical flow estimation. In this case, we train

CED on BSDS500 and test it on Sintel. We choose

EpicFlow [30] as our optical flow method. EpicFlow com-

putes geodesic distance using an edge map, which is fur-

ther used to interpolate sparse matches from [37]. Thus, an

accurate edge map is important for good flow results. We

compare CED results with HED. The AEE on Sintel train-

ing set using CED is 3.570 while HED gives 3.588. This

result illustrates that the optical flow can benefit from a bet-

ter localized edge map. Figure 8 shows visualizations of

sample flow maps from Sintel. Again, CED get slightly

more accurate flow results than HED.

5.5. Object Proposals with Crisp Boundaries

We also demonstrate the benefit of the crisp edge map

for object proposals generation—another important mid-

level vision task. We choose the Multi-scale Combinato-

rial Grouping (MCG) and its single scale version (SCG)

in [2] to generate object proposals. With an input edge map,

MCG builds a hierarchical grouping of contours to gener-

ate object proposals. The original MCG adopts the Struc-

tured Edge (SE) [8] as the default edge detector. We simply

replace the edge detector with HED [39] and CED. Note

that HED and CED are both trained only on the BSDS500

dataset. We benchmark the combination of three edge

detectors (SE, HED, CED) with both MCG and SCG.
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Figure 5. Visualization of edge detection results from different methods. First two rows show the original images and ground-truths edges.
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CED is sharper than HED and cleaner than PMI.
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Figure 6. “Crispness” of edges. We report the performance (ODS, OIS and AP) as a function of the maximal permissible distance d.
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Figure 7. Object proposals performance on VOC12 val set at instance level (left) and class level (right). We evaluate three different edge

detectors (SE, HED, CED) with two grouping methods (MCG, SCG), and report curve of the mean Jaccard index with respect to all number

of proposals. CED-MCG achieves the best results.

Nc Plane Bicycle Bird Boat Bottle Bus Car Cat Chair Cow Table Dog Horse MBike Person Plant Sheep Sofa Train TV Global

SE-MCG 100 71.2 38.6 74.7 64.5 53.7 70.6 48.9 82.7 55.4 79.1 66.7 78.8 70.6 65.4 60.4 49.9 71.9 73.7 71.3 76.2 63.8

HED-MCG 100 73.0 39.3 79.9 70.0 56.2 68.8 50.7 86.9 55.1 81.6 62.7 85.0 73.7 63.9 59.2 56.5 76.2 72.6 68.6 73.6 64.9

CED-MCG 100 78.2 42.2 85.1 72.3 55.2 76.4 56.0 90.5 56.2 83.6 68.2 88.2 76.9 70.2 62.8 55.7 78.8 77.4 78.2 75.3 68.4

SE-MCG 5138 83.0 51.2 86.4 79.7 78.1 81.8 77.4 90.8 74.5 88.7 84.2 88.1 81.4 78.6 79.7 77.5 86.7 87.8 81.9 90.3 80.8

HED-MCG 3051 83.3 52.2 87.8 81.5 77.3 80.4 78.3 94.2 74.2 90.8 82.6 92.2 84.0 76.9 78.4 75.5 90.0 87.6 80.0 87.9 80.8

CED-MCG 2757 86.8 54.7 90.3 82.7 77.5 86.9 82.2 95.1 77.1 92.0 84.6 93.2 86.2 80.8 80.8 78.8 91.0 89.4 86.3 89.6 83.3

Table 3. Object proposals performance on VOC12 val set with top-100 and all proposals. We report per-class and mean Jaccard index

(mean best overlap) at instance level. Our CED clearly outperforms all other edge detectors.
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Figure 8. Visualization of optical flow estimation results with dif-

ferent edge maps. From top to bottom: mean of two consecutive

images, ground-truth flow,and optical flow estimation results using

edge maps generated with HED and CED. CED produces better

motion details, such as the leg of the girl in the first image.

We report the mean Jaccard index at both instance level

and class level with respect to the number of proposals in

Figure 7. CED-MCG achieves the best results at both met-

rics for all number of proposals. Table 3 further compares

the Jaccard index at instance level for each class at two

operation points of Nc, namely the top-100 proposals and

all proposals. Our method outperforms HED by 4.6% with

top-100 proposals, and by 2.7% with all proposals. These

results further demonstrate the benefits of crisp edges.

6. Conclusion

We showed that ConvNet based edge detector tends to

generate edge maps which are not well aligned with image

boundaries. We discussed the reason behind the issue

and proposed a novel architecture that largely improved its

localization ability. Our detector achieved promising per-

formance on BSDS500, outperforming the state-of-the-art

methods when using strict maximum tolerance setting. We

verified the benefit of crisp edge map for optical flow esti-

mation and object proposals generation. We also plan to

apply CED to other vision tasks, such as semantic segmen-

tation.

Our work looked into edge detection, a classical problem

in computer vision. We hope that it will provide a reflection

of the recent victory of ConvNet in computer vision. While

we are getting better results from standard quantitative eval-

uations, the fundamental vision problem still remains open.

It is probably the right time to revisit our evaluation criteria.
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