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Abstract

Spectral Clustering is one of pioneered clustering meth-

ods. It relies on the spectral decomposition criterion to

learn a low-dimensional embedding of data for a basic clus-

tering algorithm. The sparse spectral clustering (SSC) in-

troduces the sparsity for the similarity in low-dimensional

space by enforcing a sparsity-induced penalty, resulting a

non-convex optimization, which is solved by a relaxed con-

vex problem via the standard ADMM (Alternative Direction

Method of Multipliers), rather than inferring latent repre-

sentation from eigen-structure. This paper provides a direct

solution as solving a new Grassmann optimization problem.

By this way calculating latent embedding becomes part of

optmization on manifolds and the recently developed man-

ifold optimization methods can be applied. It turns out the

learned new features are not only very informative for clus-

tering, but also more intuitive and effective in visualization

after dimensionality reduction. We conduct empirical stud-

ies on simulated datasets and several real-world benchmark

datasets to validate the proposed methods. Experimental

results exhibit the effectiveness of this new manifold-based

clustering and dimensionality reduction method.

1. Introduction

Clustering is one of the main unsupervised learning tasks

in exploratory data analysis, with applications ranging from

statistics, computer science, biology to social sciences or

psychology [13]. The focus of data clustering has moved

from the classic centroid-oriented clustering [4] to the sub-

space clustering [13, 24] in which data are clustered accord-

ing to their affinity towards subspace structures. With dif-

ferent motivation, researchers have developed many types

of clustering algorithms. Spectral Clustering (SC) [10] is

one of pioneered clustering methods in machine learning

community. We have seen its applications for motion seg-

mentation [13], image segmentation [22], speeach separa-

tion [3], scientific journal clustering and power load clus-

tering [17]

Generally speaking, two major steps in the spectral clus-

tering algorithm are, referring to Section 2 or [10, 21]

etc., (1) forming/learning a similarity/affinity matrix for the

given data sample set; and (2) performing general cluster-

ing methods to categorize data samples such as Normalized

Cuts (NCut) [22]. These two major steps determine the per-

formance of spectral clustering methods. A large body of

work has been investigated to improve the performance of

SC method via learning a better affinity matrix and infer-

ring new better representation of data. This paper is related

to the second paradigm aiming at learning latent representa-

tion for original data. As both paradigms are highly related

to each other, it is worthwhile reviewing the recent research

of the first paradigm.

Two classical representatives of learning similar-

ity/affinity matrix for spectral clustering-based methods are

Sparse Subspace Clustering (SSubC) [13] and Low-Rank

Representation (LRR) [18]. Both SSubC and LRR rely

on the self-expressive property in linear space [13]: each

data point in a union of subspace can be efficiently re-

constructed by a linear combination of other points in the

data set. SSubC further induces sparsity by utilizing the

l1 Subspace Detection Property in an independent manner,

while the LRR model considers the intrinsic relation among

the data objects in a holistic way via the low-rank require-

ment. It has been proved that, when the data set is actu-

ally composed of a union of multiple subspaces, the LRR

method can reveal this structure through subspace cluster-

ing [19, 8]. The self-expressive property builds on the lin-

ear relations among data. To exploit nonlinear information

hidden in manifold structure of data particularly manifold-

valued data, several authors have explored self-expressive in

terms of manifold geometry and extended LRR for Stiefel
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manifolds [28], positive definite manifolds [14] and Grass-

mann manifolds [25, 26]. In the second paradigm, many re-

searchers take it as an object to learn informative latent rep-

resentation. In the recent Sparse Spectral Clustering (SSC),

Lu et al. [20] specify a sparsity-induced penalty to learn

more clusters favored latent representation. Due to the non-

Frobenius norm constrain, the solution is no longer deter-

mined by eigenvectors and the latent representation is cal-

culated through a post stage.

Indeed, the objective of SC is to characterize how close

the eigen-structure of a similarity/affinity matrix is to a par-

tition implied by the latent representation [3]. In other

words, instead of explicitly inferring latent representation

for eigen-structure, learning the subspace structure should

be desired. This prompts that it is necessary and more rea-

sonable to implement the SC optimization over subspaces,

i.e., the points on Grassmann manifolds.

In recent years, Grassmann manifold [5, 9] has attracted

great interest in the computer vision research community

for numerous application tasks. Mathematically the Grass-

mann manifold G(d,N) is defined as the set of all d-

dimensional subspaces in R
N , where 0 ≤ d ≤ N . Its

Riemannian geometry has recently been well investigated in

literature, e.g., [2, 1, 12]. This has paved the way for solv-

ing any optimization problems defined on a Grassman man-

ifold. In fact, in recent years, the machine learning commu-

nity has been paying attention to manifold optimization for

machine learning tasks. Theis et al. [23] formulate inde-

pendent component analysis with dimensionality reduction

as optimization over the Stiefel manifold. Journee et al.

[16] frame sparse principal component analysis over this

manifold as well. And Cunningham and Ghahramani[11]

propose a uniform framework for dimensionality reduction.

Section 2 will make it clear how to embed the Grassmann

manifold optimization in the SC framework.

Compared to the aforementioned LRR subspace cluster-

ing approaches, SSubC has its own advantages, e.g., its ro-

bustness and lower computation complexity. This paper is

related to learning a better and efficient latent feature rep-

resentation with Grassmann manifold optimization. It turns

out the learned new features are not only very informative

for clustering, but also more intuitive and effective in visu-

alization after dimensionality reduction. The primary con-

tributions of this paper are:

1. We take a straightforward way to optimize the sparse

spectral clustering objective introduced in [20] by

adopting Grassmann manifold optimization strategy;

2. We integrate the standard ADMM (Alternative Direc-

tion Method of Multipliers) [6] with Grassmann mani-

fold optimization, inspired by recent works [7].

3. We explore the application of the new SC algorithm for

dimensionality reduction based on the solution given

by Grassmann manifold optimization algorithm.

The paper is organized as follows. In Section 2, we sum-

marize the related works and the preliminaries for SC and

SSC. Section 3 focuses on the framework of Grassmann

manifold optimization and the necessary optimization re-

lated ingredients will be developed. Finally the clustering

algorithm for solving the proposed model on the Grassmann

manifold is proposed. In Section 4, the performance of the

proposed method is evaluated via both the clustering and

dimensionality reduction problems on both data and real-

world datasets. Finally, conclusions and suggestions for fu-

ture work are provided in Section 5.

2. The Problem Revisited

Before going on, we start with a brief introduction of

spectral clustering. Suppose

X = [x1, · · · ,xN ] ∈ R
D×N

is a set of N data points to be clustered where D is the

dimension of data. We denote the number of clusters by K

which is a pre-specified integer, although K can be learned

from the given dataset.

The purpose of clustering is to partition the dataset X

into K clusters according to certain similarity criteria. The

Spectral Clustering (SC) has been a widely used clustering

technique [21]. To serve this paper, we repeat the generic

SC algorithm as follows [20],

1. Construct a N ×N matrix W of pairwise similarities

(weights) among these N points.

2. Form the normalized graph Laplacian

L = I−D− 1

2WD− 1

2

where D is the diagonal matrix with dii =
∑N

j=1 wij .

3. Solve the following constrained optimization for com-

puting U ∈ R
N×d,

min
U∈RN×d

〈UUT ,L〉 s.t. UTU = I. (1)

4. Normalize each row of U ∈ R
N×d to get a new matrix

Û.

5. Conduct the k-means on the rows of Û to cluster them

into K groups.

The rows of U are actually regarded as the low-

dimensional representation of the original D-dimension

data X. The elements of UUT represents the similarity

or affinity between the latent representation (rows) of the

original data, thus the objective function in problem (1) is

to enforce the dissimilarity between data similarity and the
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graph Laplacian L from data. The columns of U indeed

come from the first d eigenvectors of L corresponding to the

smallest d eigenvalues, or equivalently the eigenvectors of

the normalized affinity matrix D− 1

2WD− 1

2 corresponding

to the d largest eigenvalues. It has been observed by Ng et

al. [21] that when some key eigenvalues are equal, the best

new representation U is determined by the subspace rather

than by the particular eigenvectors. Ng et al. also analyzed

the reasons why an embedding in the low-dimensional is

more effective in clustering.

As pointed out by Ng et al. [21], in the ideal scenar-

ios, UUT can be permuted to block diagonal structure. A

block diagonal structure is favored, as it improves clustering

performance. The idea of inducing or enforcing sparsity in

the Spectral Clustering has been exploited in a recent work

[20] where the Sparse Spectral Clustering (SSC) has been

proposed.

The SSC seeks for a better representation U by solving

the following sparsity-induced problem

min
U∈RN×d

〈UUT ,L〉+ β‖UUT ‖0, s.t. UTU = I, (2)

where β > 0 trades off the objective of SC and the spar-

sity of UUT . However, minimization of ‖ · ‖0 results in

a NP-hard combinatorial optimization problem. It is well-

known that the ℓ1-norm is the convex envelope of ℓ0-norm

within the ℓ1-ball. It is a general practice in machine learn-

ing to replace ℓ0-norm with ℓ1-norm, thus problem (2) can

be relaxed to the following problem for better numerical

purpose,

min
U∈RN×d

〈UUT ,L〉+ β‖UUT ‖1, s.t. UTU = I. (3)

Ideally, the elements in UUT corresponding to the weak

inter-cluster connections tends to be zeros, while the ones

corresponding to the strong intra-cluster connections will be

kept. However the relaxed problem (3) is still a constrained

nonconvex optimization in terms of the latent variable U.

The authors of [20] go further to optimize the new variable

P = UUT instead, based on the fact that the set S2 ={
P ∈ S

N×N | 0 � P � I, tr
(
P
)
= d

}
is the convex hull

of S1 =
{
UUT | U ∈ R

N×d,UTU = I
}

.

Finally the SSC aims at solving the following relaxed

convex problem defined as follows:

min
P∈SN×N

〈P,L〉+ β‖P‖1,

s.t. 0 � P � I, tr
(
P
)
= d.

(4)

Now problem (4) can be solved by the standard ADMM

procedure with the assistance of an efficient algorithm for

the so-called capped simplex projection problem. For more

details refer to [20, 27]. After solving (4) for P, the final so-

lution for the latent representation U to (3) can be approxi-

mated by using the first d eigenvectors corresponding to the

largest d eigenvalues of P by its eigen decomposition. As

we mentioned earlier, this U may not be the best solution

for the following clustering process. In the next section, we

propose to solve the relaxed problem (3) directly.

3. Grassmann Manifold Optimization

3.1. Reforming the Problem

Consider problem (3). Denote the objective function by

f(U) = 〈UUT ,L〉+ β‖UUT ‖1 (5)

where L is the given Laplacian of data graph. The con-

straint condition in problem (3) defines the so-called Stiefel

manifold , consisting of all the orthogonal column matrices,

S(d,N) = {U ∈ R
N×d | UTU = I}.

Hence problem (3) is an unconstrained manifold optimiza-

tion problem on the Stiefel manifold S(d,N).
Consider the d-order group O(d) = {Q ∈ R

d×d |
QTQ = I} of all the d × d orthogonal matrices. With

O(d), we can define an equivalent relation ∼ on the Stiefel

manifold S(d,N) in the sense that U1 ∼ U2 means that

there exists a Q ∈ O(d) such that U1 = U2Q. The quo-

tient space of Stiefel manifold S(N, d) under this equivalent

relation is actually the concrete representation of the ab-

stract Grassmann manifold G(N, d), see [2, 12]. A point on

Grassmann manifold is actually realized by the equivalent

class [U] = {UQ | for all Q ∈ O(d)} where U ∈ R
N×d

is an orthogonal column matrix, called a representative of

Grassmann point [U].
It is easy to check that for any Q ∈ O(d) we have

f(UQ) = f(U),

which shows the objective function of problem (3) is equal

valued on the equivalent class [U]. In other words, if U is a

solution to (3), so is UQ for any Q ∈ O(d).
Simply optimizing (3) on Stiefel manifold S(d,N) may

result in identifiability issue due to the equal function value

on the equivalent class. A better strategy is to re-form the

problem on the Grassmann manifold as follows

min
[U]∈G(d,N)

f(U) = 〈UUT ,L〉+ β‖UUT ‖1, (6)

where Equation 6 is an unconstrained Grassmann manifold

optimization problem.

A number of methods have been developed to solve man-

ifold optimization problems in the last two decades. The

representative work [2] has developed a framework of opti-

mizing functions defined on different types of matrix man-

ifolds. The typical algorithms are the Riemannian gradient

descent algorithm and Riemannian trust region algorithm,
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which are implemented in the Matlab toolbox ManOpt1. A

successful algorithm for manifold optimization depends on

the knowledge of rich Riemann geometry of a concerned

manifold.

Edelman et al. [12] explored the Riemann geometry for

both Stiefel and Grassmann manifolds and developed opti-

mization algorithms on these manifolds. The most impor-

tant ingredient for these manifold optimization algorithm is

the Riemannian gradient induced by the Riemannian metric

of a relevant manifold.

The rich geometry of Riemannian manifolds makes it

possible to define Riemannian gradients and Hessians of ob-

jective functions f , as well as systematic procedures (called

retractions) to move on the manifold starting at a point U,

along a specified tangent direction at U. For most manifolds

embedded in Euclidean space, like Grassmann manifolds,

the Riemannian gradient is the projection of Euclidean gra-

dient onto the relevant tangent space of the manifold. In

the next subsection, we will focus on computing Euclidean

gradient of the sparse spectral clustering objective function

(5).

3.2. Computing the Gradient

The objective function (5) of the new optimization prob-

lem (6) is not differentiable at the location where elements

of UUT are zero. However in this case we will adopt using

the subdifferential.

To work out the formula for its Euclidean derivative, we

introduce several notations. For a matrix A of size m × n,

vec(A) is a mn-dimensional vector by stacking columns of

A one by one, and ivec(vec(A)) = A the inverse operation

of vec. A ⊗B is the Kronecker product of matrices A and

B. The transform Tm,n is a matrix of size mn ×mn such

that vec(A) = Tm,nvec(AT ).
For the first term in the objective function (5), we note

that:

〈UUT ,L〉 = tr(UUTL) = tr(UTLU).

Hence

∇〈UUT ,L〉 = LU+ LTU = 2LU

because L is normally symmetric.

Consider the second term of the objective function. First,

according to the chain rule, we have:

vec

(
‖UUT ‖1

∂U

)T

= vec(sgn(UUT ))T
∂UUT

∂U
,

where

∂UUT

∂U
= (IN2 + TN×N,N×N )(U⊗ IN ).

1http://www.manopt.org

Define the column vector D as

D =
∂UUT

∂U
vec(sgn(UUT ))

Thus the Euclidean derivative of the objective function

f(U) is:

∇f(U) = 2LU+ βivec(D). (7)

3.3. The Sparse Spectral Clustering Algorithm

At the representative U of a Grassmann point [U], the

Riemann gradient can be simply calculated as

grad[U]f = (I−UUT )∇f(U).

With this calculation, we can employ the ManOpt toolbox

to solve Grassmann manifold optimization problem (6) to

get a solution U. For the initial N × k latent representa-

tion matrix U(0),it can be approximated by using the first

k eigenvectors corresponding to the largest k eigenvalues of

W, where the N × N matrix W is the pairwise similari-

ties (weights) among the N data points. We summarize the

algorithm in Algorithm 1.

Algorithm 1 Grassmann Manifold Optimization Assisted

Spectral Clustering (GSC) Algorithm

Input: The data matrix X = [x1,x2, ...,xN ], the number

of latent dimension d and the trade-off parameter β.

Output: The sparse latent representation U.

1: Form the affinity matrix W, and compute the initial la-

tent representation U(0);

2: Compute the normalized Laplacian matrix L;

3: With the initial U(0), call the Riemannian trust-region

(RTR) algorithm in ManOpt toolbox to optimize the ob-

jective, until a pre-defined termination criterion is sat-

isfied.

There are two ways to use the solution U given by the

Riemannian trust-region (RTR) algorithm. As the rows of

U are regarded as latent representation of original data.

When d is relevantly small, we can visualize them as the

results from dimensionality reduction. Hence the optimiza-

tion of problem (6) can be regarded as a dimensionality re-

duction while the criterion is equivalent to matching the

similarity information of objects in both data space and

latent space [21]. This has certain link with the idea of

Twin Kernel Embedding [15] where a kernel relationship

between data space and latent space was specified via ker-

nel functions. Our experiments on both synthetic and real-

world data show excellent performance in terms of dimen-

sionality reduction and visualization. We call this the Grass-

mann Manifold Optimization Assisted Dimensionality Re-

duction (GDR).

The second way is to use U for final data clustering. For

example, we can take as input U for the k-means. In this
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paper, we construct a new affinity matrix W∗ = UUT and

take it as input for the Normalized Cut (NCut) method to

separate the data into clusters. We call the algorithm Grass-

mann Manifold Optimization Assisted Spectral Clustering

(GSC) algorithm.

4. Experiment Results

In this section, we first evaluate the performance of our

GSC model on synthetic data sets for clustering. Secondly,

we combine it with GDR model for dimensionality reduc-

tion and clustering. We also make a comparison between

our algorithm and traditional Ncut algorithm and the con-

vex Sparse Spectral Clustering (SSC) proposed in [20]. As

the performance of SSC with Normalized Cut (NCut) is

superior than with K-means. For a fair comparison, we

changed the final SSC processing step in [20]. In our pro-

gram,instead of approximating U by using the first k eigen-

vectors corresponding to k largest eigenvalues of P, we di-

rectly take matrix P as input for the Ncut method to sepa-

rate the data into clusters. The algorithm is coded in Matlab

R2015a and conducted on a PC with a CPU 3.20GHz and

8G RAMs.

4.1. Experiments on Synthetic Data

The synthetic data used in this experiment are (1) two

moons data; (2) three Gaussian data; (3) three rings data;

and (4) two disjoint quadratic para-curves. The data used

in this experiment are shown in Figure 1 with their clusters

colored.

Two-Moon data: There exist two clusters of data dis-

tributed in the half-moon shape with slightly crossing over-

lapping. This dataset is frequently used to test the perfor-

mance of new clustering algorithms. The data was ran-

domly generated from two sine-shape curves with the noise

percentage set to 0.09. In this case, each cluster contains

100 samples.

Three-Gaussian data: The second toy data set is sam-

pled from a mixture of three Gaussian components. Each

cluster obeys a Gaussian distribution with a variance of

0.05. Each cluster has 100 samples.

Three-Ring data: The third synthetic data set is a ran-

domly generated three-ring data in 2-dimensional plane,

among which the data are distributed on circles, with the

noise percentage set to 0.15. There are 100,100 and 150

samples in each cluster, respectively.

Two Disjoint Para-Curves data: The last data set con-

sists of two clusters of data distributed on two disjoint

parabolic-shape curves without overlapping, corrupted with

Gaussian noise of 0 mean and variance 0.05. Each cluster

contains 200 samples.

In our algorithm, we use the classical k-nearest-neighbor

(k-nn for short) graph to construct affinity based on the

neighborhood relationship between data points. Then the
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Figure 1. Synthetic toy data sets: Two-moon data (a); Three-

gaussian data (b); Three-ring data (c); and two disjoint para-curves

(d).
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Figure 2. Visualization of the Ncut data clustering results on two

moon (a), three-gaussian (b) and three-ring data (c). Both GSC

and SSC achieve 100% accuracy for these three cases.

-0.5 0 0.5

0

0.2

0.4

0.6

(a)

-0.5 0 0.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(b)

-0.5 0 0.5

0

0.2

0.4

0.6

(c)

Figure 3. Two disjoint para-curves clustering results, using Ncut

(a), SSC (b) and GSC (c)

Gaussian kernel is computed as the affinity similarity, which

can also be used as Step 1 of Algorithm 1. The standard

deviation of the kernel is taken equal to the median of the

pair-wise Euclidean distances between the data points. We
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Figure 4. Plots of the affinity matrix of two disjoint para-curves

data set: (a) k-nn with k = 8; (b) P by SSC in Eqution (4); and

(c) UU
T by GSC in Equation (6)

set k = 6 in two moon, three Gaussian data sets and two

disjoint para-curves, while k = 8 for three-ring data set.

In this work, we assume that the number of clusters K is

known.

The clustering accuracy of the classical Ncut algo-

rithm on two-moon, three-Gaussian, three-ring data sets is

56.50%, 60.10%, and 86.00%, respectively. The visualiza-

tion comparison of the clustering results of the first three

data sets based on Ncut are depicted in Figure 2. The re-

sults are not satisfactory.

β
Three-Gaussian Three-Ring

SSC GSC SSC GSC

β=0.00001 100 100 100 100

β=0.00005 100 100 81.71 100

β=0.0001 100 91.31 76.86 100

β=0.0005 53 95.7 49.43 87.14

β=0.001 51.34 95.3 41.71 83.71

β=0.005 45 93 38.00 83.71

β=0.01 44.33 93 34.57 83.71

Table 1. Clustering accuracy(%) of SSC and GSC against different

β on three-Gaussian and three-ring data sets.

Instead of applying Ncuts directly on the affinity matrix

of the data, we input the affinity matrix as the result of step 1

of Algorithm 1. After getting the solution U by Algorithm

1, we take as input to the NCut algorithm W∗ = UUT .

The best results of both GSC and SSC are achieved when

β = 0.00001 for two-moon, three-Gaussian and three-ring

data sets. Both achieve 100% accuracy. We compare the

influence of β on the performance of both GSC and SSC. As

β increases, GSC performs better than SSC, especially for

three-ring and three-Gaussian data sets. Table 1 shows the

clustering performance versus parameter β on the two data

sets. Both cases indicate that GSC performance is much

more robust than SSC against β.

For the two disjoint para-curves dataset, the clustering

accuracy of Ncut method is poorly 54.50%. The best result

for GSC method is 100% when β=0.000001, while the best

SSC performance is only 83.50% accuracy. The visualiza-

tion comparison results on clustering accuracy are shown in

Figure 3.

In order to explore the underlying low-dimensional

structure within data, we also provide a visual comparison

of affinity matrices of two disjoint para-curves data set. Fig-

ure 4(a) plots the affinity matrix W by k-nn with k = 8;

Figure 4(b) shows P by SSC in Equation (4); and Figure

4(c) demonstrates UUT by GSC in Equation (6). The affin-

ity matrix obtained by GSC effectively reveals the cluster

structure of data so as to benefit the subsequent clustering

task.

From the listed results, three observations can be made:

1. For ordinary data sets such as two-moon, three-

Gaussian adnd three-ring data sets, both GSC and SSC

can achieve the same best accuracy. The clustering re-

sults from GSC and SSC are better than that from the

Ncut algorithm.

2. The clustering results for GSC is much more robust

than SSC versus the sparse regularization parameter β,

especially for the complicated three-Gaussian, three-

ring data, and the two disjoint para-curves data sets.

3. For the data such as the two disjoint para- curves, GSC

outperforms SSC. The reason may be that GSC takes

care of nonlinear manifold structures of data more se-

riously. This motivates us to conduct our GSC algo-

rithm on many high-dimensional data, and pursuit their

latent low-dimensional representation with our GDR

method.

4.2. Experiments on RealWorld Benchmark
Datasets

In this subsection, we conduct several experiments on

some public databases to assess the proposed GSC model.

We evaluate the proposed clustering methods on extended

Yale B data set, ORL data set and the MNIST handwrit-

ten digits database. We use the accuracy for performance

assessment.

4.2.1 Experiments on Clustering

For the clustering problem, all of the experiments are con-

ducted on the following three public available datasets:

1. The YaleB face database (http://vision.ucsd.

edu/content/yale-face-database).

2. The ORL face database (http://www.cam-orl.

co.uk).

3. A subset of handwritten digits images from the

MNIST database (http://yann.lecun.com/

exdb/mnist).
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(a) (b)

Figure 5. Examples of the face datasets: (a) Extended Yale B and

(b) ORL faces.

Figure 6. Examples of the MNIST handwritten digits

The Extended Yale B dataset consists of face images of

38 human subjects. Some sample face images are shown

in Figure 5(a). For each subject, there are Ni = 64 frontal

face images acquired under various lighting conditions. The

images were captured under different illumination and ex-

pression conditions. To reduce the computational cost and

the memory requirements of all algorithms, we downsample

the images to 32×32 pixels and treat each 1032D vectorized

image as a data point.

The ORL face database is composed of 400 images of

size 112 x 92 and some samples are shown in Figure 5(b).

There are 40 individuals, 10 images per each person. The

images were taken at different times, lighting and facial ex-

pressions. The faces are in an upright position in frontal

view, with a slight left-right rotation. All the data is col-

lected in a matrix of shape 10304 (pixels) x 400 (faces). To

avoid large values, the data matrix is divided by 100.

We follow the settings in [13] to construct the affinity

matrix by l1-graph and apply Ncut, SSC and GSC on

the constructed affinity matrix for these two face data

sets. Six subsets are constructed which consist of all

the images of the randomly selected subjects with the

number of clusters, i.e., K ranging from 5 to 18. We set

{0.00001, 0.00005, 0.0001, 0.0005, 0.001, 0.05, 0.01} as

the candidate set of parameter β both in GSC (6) and SSC

(3),and conducted grid search to tune the parameter β.

For each dataset and each algorithm, exhaustive tests were

done to find the quasi-optimal parameters setting.The final

performance scores were computed by averaging the scores

from 20 trials.

Method Ncut SSC GSC

K = 5 61.56(9.34) 95.64(5.90) 96.58(3.94)

K = 8 56.77(8.84) 88.95(4.76) 91.65(4.64)

K = 10 48.39(7.61) 82.86(4.86) 85.24(4.34)

K = 12 46.94(4.82) 80.17(4.40) 82.64(4.20)

K = 15 45.51(4.06) 76.91(1.57) 77.82(1.63)

K = 18 45.33(3.80) 75.06(1.59) 76.84(1.49)

Table 2. Clustering results in terms of accuracy (%) and standard

deviation on YaleB dataset.

We also evaluate the stability of the GSC model versus

SSC with respect to the sparse regularization parameter β.

This time, we set the same β in these two methods, and the

number of clusters K is set 5, 10 and 15, respectively.

β
K = 5 K = 10 K = 15

SSC GSC SSC GSC SSC GSC

β=0.00001 95.53 96.14 82.24 83.30 76.82 77.14

β=0.00005 95.35 96.25 81.93 83.39 76.67 77.04

β=0.0001 95.25 96.34 76.25 81.96 76.37 76.59

β=0.0005 80.38 95.89 69.27 81.61 67.44 76.59

β=0.001 57.98 85.94 54.37 69.85 68.75 73.70

β=0.005 36.98 72.85 32.75 61.35 52.48 70.13

β=0.01 30.59 62.51 22.37 55.00 38.14 69.87

Table 3. Clustering accuracy(%) of SSC and GSC against different

β on Yale B face data sets.

The experiments are repeated 20 times and the mean

and standard deviation of the clustering accuracy rates with

quasi-optimal parameters setting are summarized in Ta-

bles 2 and 4 for two datasets. Tables 3 and 5 show the

clustering performance against different β on the two face

datasets by averaging the clustering accuracy rates of the

above repeated 20 times experiments.These results show

GSC method outperforms SSC method not only in accuracy

but also in stability.

The subset of handwritten digits images in Figure 6 is

selected from MNIST database, which contains 60000 dig-

ital images with 600 images of each digit. All images are

in grayscale and have a uniform size of 28× 28 pixels. We

use a subset which has 400 samples with 5 clusters (each

has 80 samples). In this test, we compare the affinity ma-

trices from the original l1-graph, SSC and GSC algorithms.

Clearly our GSC algorithm captures the structure informa-

tion of clusters.

Now we discuss the convergence of the algorithm.

Convergence and Optimality: The new optimization

GSC in (6) is nonlinear and we use the Riemannian trust-

region (RTR) algorithm to solve. There could be many local

minima. The general convergence analysis has been done

in e.g. [1]. For our case, the conditions for the convergence

are satisfied, the special initialization from data similarity

W may drive the iterative process towards a good solution.
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Figure 7. Affinity matrix of 5 classes MNIST digits: (a) l1-graph;

(b) P by SSC in Eq. (4); and (c) UU
T by GSC in Eq (6).

Method Ncut SSC GSC

K = 5 59.85(6.98) 97.25(6.62) 97.80(5.41)

K = 8 55.75(6.31) 91.25(5.89) 93.50(5.41)

K = 10 55.25(5.91) 80.95(10.67) 82.77(6.32)

K = 12 51.35(6.98) 79.55(11.32) 82.50(10.82)

K = 15 50.47(5.07) 78.85(7.06) 79.67(4.79)

K = 18 50.10(4.76) 77.95(7.41) 78.96(5.21)

Table 4. Clustering results in terms of accuracy (%) and standard

deviation on ORL dataset.

All the experimental cases show good convergent speed.

β
K = 5 K = 10 K = 15

SSC GSC SSC GSC SSC GSC

β=0.00001 94.60 96.20 79.90 81.30 77.26 77.73

β=0.00005 94.60 96.20 79.70 80.80 77.07 77.47

β=0.0001 94.25 96.00 79.10 80.96 76.77 77.69

β=0.0005 95.60 96.00 80.60 81.21 77.13 77.73

β=0.001 95.80 96.67 80.70 80.80 77.45 78.00

β=0.005 90.00 96.00 75.50 81.30 70.20 77.13

β=0.01 78.25 87.33 59.80 77.10 54.53 73.87

Table 5. Clustering accuracy(%) of SSC and GSC against different

β on ORL face datasets.

4.2.2 Experiments on Dimensionality Reduction

Dimensionality reduction (DR) is a method to represent

high-dimensional data by their low-dimensional embed-

dings so that the low-dimensional data can be effectively

used either in a pre-processing system, or for better under-

standing by avoiding the curse of dimensionality. It has

been proved that DR is an important tool and DR has been

widely used in many fields of data mining, data visualiza-

tion, and machine learning.

Besides the superiority in clustering accuracy, another

advantage of our Grassmannian manifold optimization is

that it can get the embedded space given by matrix U,

whose rows are regarded as latent representation of origi-

nal data. In the low-dimensional space defined by the rows

of U, we would expect that data clusters can be revealed.
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Figure 8. Visualization of the data dimension reduction of PCA of

original data set (a) and (d); matrix U of SSC (b) and (e), and U

of GDR (c) and (f): 5 classes case on the first row and 8 classes

case on the second row for the YaleB faces data set.

To test our algorithm’s DR capability we test GDR on the

Yale B face dataset.

Figure 8(a) and (d) demonstrate the 3-dimensional scat-

tering of 5 and 8 classes, respectively, from the Yale B faces

data sets used in Section 4.2 after the Principal Component

Analysis (PCA) linear dimensionality reduction method.

Similarly, Figure 8(b) and (e) show the 3-dimensional scat-

tering of the solution U of SSC by using the first 3 eigenvec-

tors corresponding to the first 3 largest eigenvalues, and Fig-

ure 8(c) and (f) demonstrate the 3-dimensional scattering of

the solution U given by our GDR. It clearly shows that GDR

is the winner for meaningful visualization of datasets.

5. Conclusions

This paper proposes the GSC model which adopts Grass-

mann manifold optimization strategy to optimize the sparse

spectral clustering objective introduced in [20] in a straight-

forward way, We also propose the GDR model which visu-

alizes the latent representation of original data as the results

from dimensionality reduction. Extensive experiments con-

ducted on several real-world datasets demonstrate the effec-

tiveness of our methods.
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