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3Department of Mathematics, Hong Kong Baptist University, Kowloon Tong, Hong Kong
4School of Electrical and Computer Engineering, Cornell University, Ithaca, NY

Abstract

Many modern computer vision and machine learning ap-

plications rely on solving difficult optimization problems

that involve non-differentiable objective functions and con-

straints. The alternating direction method of multipliers

(ADMM) is a widely used approach to solve such prob-

lems. Relaxed ADMM is a generalization of ADMM that

often achieves better performance, but its efficiency depends

strongly on algorithm parameters that must be chosen by

an expert user. We propose an adaptive method that au-

tomatically tunes the key algorithm parameters to achieve

optimal performance without user oversight. Inspired by

recent work on adaptivity, the proposed adaptive relaxed

ADMM (ARADMM) is derived by assuming a Barzilai-

Borwein style linear gradient. A detailed convergence anal-

ysis of ARADMM is provided, and numerical results on

several applications demonstrate fast practical convergence.

1. Introduction

Modern methods in computer vision and machine learn-

ing often require solving difficult optimization problems

involving non-differentiable objective functions and con-

straints. Some popular applications include sparse models

[48, 54, 8, 36], low-rank models [47, 23, 53, 31], and support

vector machines (SVMs) [4, 3]. The alternating direction

method of multiplier (ADMM) is one of the most promi-

nent optimization tools to solve such problems, and tackles

problems in the following form:

min
u∈Rn,v∈Rm

h(u) + g(v), subject to Au+Bv = b. (1)

Here, h : Rn → R and g : Rm → R are closed, proper,

and convex functions, A ∈ R
p×n, B ∈ R

p×m, and b ∈ R
p.

ADMM was first introduced in [16] and [12], and has found

∗xuzh@cs.umd.edu

applications in a variety of optimization problems in ma-

chine learning, image processing, computer vision, wireless

communications, and many other areas [2, 21].

Relaxed ADMM is a popular practical variant of ADMM,

and proceeds with the following steps:

uk+1 = argmin
u

h(u) +
τk
2

∥
∥
∥
∥
b−Au−Bvk +

λk

τk

∥
∥
∥
∥

2

(2)

ũk+1 = γkAuk+1 + (1− γk)(b−Bvk) (3)

vk+1 = argmin
v

g(v) +
τk
2

∥
∥
∥
∥
b− ũk+1 −Bv +

λk

τk

∥
∥
∥
∥

2

(4)

λk+1 = λk + τk(b− ũk+1 −Bvk+1). (5)

Here, λk ∈Rp denotes the dual variables (Lagrange multi-

pliers) on iteration k, and (τk, γk) are sequences of penalty

and relaxation parameters. Relaxed ADMM coincides with

the original non-relaxed version if γk = 1.

Convergence of (relaxed) ADMM is guaranteed under

fairly general assumptions [6, 25, 26, 10], if the penalty

and relaxation parameters are held constant. However, the

practical performance of ADMM depends strongly on the

choice of these parameters, as well as on the problem being

solved. Good penalty choices are known for certain ADMM

formulations, such as strictly convex quadratic problems [40,

14], and for the gradient descent parameter in the “linearized”

ADMM [32, 34].

Adaptive penalty methods (in which the penalty param-

eters are tuned automatically as the algorithm proceeds)

achieve good performance without user oversight. For non-

relaxed ADMM, the authors of [24] propose methods that

modulate the penalty parameter so that the primal and dual

residuals (i.e., derivatives of the Lagrangian with respect to

primal and dual variables) are of approximately equal size.

This “residual balancing” approach has been generalized to

work with preconditioned variants of ADMM [20] and dis-

tributed ADMM [44]. In [51], a spectral penalty parameter

method is proposed that uses the local curvature of the ob-

jective to achieve fast convergence. All of these methods are
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specific to (non-relaxed) vanilla ADMM, and do not apply

to the more general case involving a relaxation parameter.

1.1. Overview & contributions

In this paper, we study adaptive parameter choices for

the relaxed ADMM that jointly and automatically tune both

the penalty parameter τk and relaxation parameter γk. In

Section 3, we address theoretical questions about the conver-

gence of ADMM with non-constant penalty and relaxation

parameters. In Section 4, we discuss practical methods for

choosing these parameters. In Section 6, we apply the pro-

posed ARADMM to several problems in machine learning,

computer vision, and image processing. Finally, in Section 7,

we compare ARADMM to other ADMM variants and ex-

amine the benefits of the proposed approach for real-world

regression, classification, and image processing problems.

2. Related work

Sparse and low rank methods are widely used in computer

vision [48, 54, 8, 47, 23, 36, 53, 31], machine learning [7,

57, 43, 9, 33], and image processing [42, 21]. ADMM has

been extensively applied to solve such problems [2, 21, 51,

50], and has recently found applications in neural networks

[56, 45], tensor decomposition [18, 35, 52], structure from

motion [19], and other vision problems.

The O(1/k) convergence rate of non-relaxed ADMM

is established under mild conditions for convex prob-

lems [25, 26]. The O(1/k2) convergence rate is discussed

in [17, 21, 27, 46], where at least one of the functions is

assumed either strongly convex or smooth. For the general

relaxed ADMM formulation, a O(1/k) convergence rate is

provided under mild conditions [10]. Linear convergence can

be achieved with strong convexity assumptions [5, 38, 15].

All of these results assume constant parameters—it is con-

siderably harder to prove convergence when the algorithm

parameters are adaptive.

Fixed optimal parameters are discussed in the literature.

For the specific case in which the objective is quadratic, a

criterion is proposed in [40, 14]. The authors of [38] suggest

a grid search and semidefinite programming based method

to determine the optimal relaxation and penalty parameters.

These methods, however, make strong assumptions about

the objective and require knowledge of condition numbers.

Adaptive penalty methods are proposed to accelerate the

practical convergence of non-relaxed ADMM [24, 51]. For

the relaxation parameter, it has been suggested in [6] that

over-relaxation (γ ∈ (1, 2)) may accelerate convergence and

γ = 1.5 achieves faster convergence in a specific distributed

computing application. The proposed ARADMM simultane-

ously adapts both the penalty and the relaxation parameter,

thus being fully automated.

3. Convergence theory

We study conditions under which ADMM converges with

adaptive penalty and relaxation parameters. Our approach

utilizes the variational inequality (VI) methods put forward

in [24, 25, 26]. Our results measure convergence using the

primal and dual “residuals,” which are defined as

rk = b−Auk −Bvk and dk = τkA
TB(vk − vk−1). (6)

It has been observed that these residuals approach zero as

the algorithm approaches a true solution [2]. Typically, the

iterative process is stopped if

‖rk‖ ≤ ǫtol max{‖Auk‖, ‖Bvk‖, ‖b‖}
and ‖dk‖ ≤ ǫtol‖ATλk‖,

(7)

where ǫtol > 0 is the stopping tolerance [2]. For this reason,

it is important to know that the method converges in the

sense that the residuals approach zero as k →∞.
In the sequel, we prove that relaxed ADMM converges

in the residual sense, provided that the algorithm parameters

satisfy one of the following two assumptions.

Assumption 1. The relaxation sequence γk and penalty

sequence τk satisfy

1 ≤ γk < 2, lim
k→∞

1/τ2k <∞,

∞∑

k=1

η2k <∞,

where η2k =
γk

(2− γk)
max

(
τ2k/τ

2
k−1, 1

)
− 1.

(8)

Assumption 2. The relaxation sequence γk and penalty

sequence τk satisfy

1 ≤ γk < 2, lim
k→∞

τ2k <∞,

∞∑

k=1

θ2k <∞,

where θ2k =
γk

(2− γk)
max

(
τ2k−1/τ

2
k , 1

)
− 1.

(9)

In Section 5, we prove adaptive relaxed ADMM con-

verges if the algorithm parameters satisfy either Assumption

1 or Assumption 2. Before presenting the proof, we show

how to choose the relaxation parameters that lead to efficient

performance in practice.

4. ARADMM: Adaptive relaxed ADMM

Spectral stepsize selection methods for vanilla ADMM

were discussed in [51]. Here, we modify the adaptive

ADMM framework in two important ways. First, we discuss

the selection of penalty parameters in the presence of the

relaxation term. Second, we discuss adaptive methods also

for automatically selecting the relaxation parameter.

The proposed method works by assuming a local linear

model for the dual optimization problem, and then selecting
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an optimal stepsize under this assumption. A safeguarding

method is adopted to ensure that bad stepsizes are not chosen

in case these linearity assumptions fail to hold.

4.1. Dual interpretation of relaxed ADMM

We derive our adaptive stepsize rules by examining the

close relationship between relaxed ADMM and the relaxed

Douglas-Rachford Splitting (DRS) [6, 5, 15]. The dual of

the general constrained problem (1) is

min
ζ∈Rp

h∗(AT ζ)− 〈ζ, b〉
︸ ︷︷ ︸

ĥ(ζ)

+ g∗(BT ζ)
︸ ︷︷ ︸

ĝ(ζ)

, (10)

with f∗ denoting the Fenchel conjugate of f , defined as

f∗(y) = supx〈x, y〉 − f(x) [41].
The relaxed DRS algorithm solves (10) by generating two

sequences, (ζk)k∈N and (ζ̂k)k∈N, according to

0 ∈ ζ̂k+1 − ζk

τk
+ ∂ĥ(ζ̂k+1) + ∂ĝ(ζk), (11)

0 ∈ζk+1 − ζk

τk
+ γk ∂ĥ(ζ̂k+1)

− (1− γk)∂ĝ(ζk) + ∂ĝ(ζk+1), (12)

where γk is a relaxation parameter, and ∂f(x) denotes the

subdifferential of f evaluated at x [41]. Referring back

to ADMM in (2)–(5), and defining λ̂k+1 = λk + τk(b −
Auk+1−Bvk), the sequences (λk)k∈N and (λ̂k)k∈N satisfy

the same conditions (11) and (12) as (ζk)k∈N and (ζ̂k)k∈N,

thus ADMM for the problem (1) is equivalent to DRS on

its dual (10). A detailed proof of this is provided in the

supplementary material.

4.2. Spectral adaptive stepsize rule

Adaptive stepsize rules of the “spectral” type were origi-

nally proposed for simple gradient descent on smooth prob-

lems by Barzilai and Borwein [1], and have been found to

dramatically outperform constant stepsizes in many applica-

tions [11, 49]. Spectral stepsize methods work by modeling

the gradient of the objective as a linear function, and then se-

lecting the optimal stepsize for this simplified linear model.

Spectral methods were recently used to determine the

penalty parameter for the non-relaxed ADMM in [51]. In-

spired by that work, we derive spectral stepsize rules assum-

ing a linear model/approximation for ∂ĥ(ζ̂) and ∂ĝ(ζ) at

iteration k given by

∂ĥ(ζ̂) = αk ζ̂ +Ψk and ∂ĝ(ζ) = βk ζ +Φk, (13)

where αk > 0, βk > 0 are local curvature estimates of ĥ
and ĝ, respectively, and Ψk,Φk ⊂ R

p. Once we obtain

these curvature estimates, we will exploit the following sim-

ple proposition whose proof is given in the supplementary

material.

Proposition 1. Suppose the DRS steps (11)–(12) are ap-

plied to problem (10), where (omitting iteration k from

αk, βk,Ψk,Φk to lighten the notation in what follows)

∂ĥ(ζ̂) = α ζ̂ +Ψ and ∂ĝ(ζ) = β ζ +Φ. (14)

Then, the residual of ĥ(ζk+1) + ĝ(ζk+1) will be zero if τ

and γ are chosen to satisfiy γk = 1 +
1+αβτ2

k

(α+β)τk
.

Our adaptive method works by fitting a linear model to

the gradient (or subgradient) of our objective, and then using

Proposition 1 to select an optimal stepsize pair that obtains

zero residual on the model problem. For our convergence

theory to hold, we need γ < 2. For fixed values of α and

β, the minimal value of γk that is still optimal for the linear

model occurs if we choose

τk = argmin
τ

1 + αβτ2

(α+ β)τ
= 1/

√

αβ. (15)

Note this is the same “optimal” penalty parameter proposed

for non-relaxed ADMM in [51]. Under this choice of τk, we

then have the “optimal” relaxation parameter

γk = 1 +
1 + αβτ2

(α+ β)τ
= 1 +

2
√
αβ

α+ β
≤ 2. (16)

4.3. Estimation of stepsizes

We now propose a simple method for fitting a linear

model to the dual objective terms so that the formulas in

Section 4.2 can be used to obtain stepsizes. Once these

linear models are formed, the optimal penalty parameter and

relaxation term can be calculated by (15) and (16), thanks to

the equivalence of relaxed ADMM and DRS.

In what follows, we let α̂k = 1/αk and β̂k = 1/βk to

simplify notation. The optimal stepsize choice is then written

as τk = (α̂k β̂k)
1/2 and γk = 1 +

2
√

α̂kβ̂k

α̂k+β̂k

.

The estimation of α̂k and β̂k for the dual components

ĥ(λ̂k) and ĝ(λk) at the k-th iteration of primal ADMM has

been described in [51]. It is easy to verify that the model

parameters α̂k and β̂k of relaxed ADMM can be estimated

based on the results from iteration k and an older iteration

k0 < k in a similar way. If we define

∆λ̂k := λ̂k − λ̂k0
and ∆ĥk := A(uk − uk0

), (17)

then the parameter α̂k is obtained from the formula

α̂k =

{

α̂MG
k if 2 α̂MG

k > α̂SD
k

α̂SD
k − α̂MG

k /2 otherwise,
(18)

α̂SD
k =

〈∆λ̂k,∆λ̂k〉
〈∆ĥk,∆λ̂k〉

and α̂MG
k =

〈∆ĥk,∆λ̂k〉
〈∆ĥk,∆ĥk〉

. (19)

For a detailed derivation of these formulas, see [51].
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The spectral stepsize β̂k of ĝ(λk) is similarly estimated

with ∆ĝk :=B(vk − vk0
), and ∆λk := λk − λk0

. It is im-

portant to note that α̂k and β̂k are obtained from the iterates

of ADMM alone, i.e., our scheme does not require the user

to supply the dual problem.

4.4. Safeguarding

Spectral stepsize methods for simple gradient descent are

paired with a backtracking line search to guarantee conver-

gence in case the linear model assumptions break down and

an unstable stepsize is produced. ADMM methods have no

analog of backtracking. Rather, we adopt the correlation

criterion proposed in [51] to test the validity of the local

linear assumption, and only rely on the adaptive model when

the assumptions are deemed valid. To this end, we define

αcor
k =

〈∆ĥk,∆λ̂k〉
‖∆ĥk‖ ‖∆λ̂k‖

and βcor
k =

〈∆ĝk,∆λk〉
‖∆ĝk‖ ‖∆λk‖

. (20)

When the model assumptions (14) hold perfectly, the vectors

∆ĥk and ∆λ̂k should be highly correlated and we get αcor
k =

1. When αcor
k or βcor

k is small, the model assumptions are

invalid and the spectral stepsize may not be effective.

The proposed method uses the following update rules

τk+1 =























√

α̂kβ̂k if αcor
k > ǫcor and βcor

k > ǫcor

α̂k if αcor
k > ǫcor and βcor

k ≤ ǫcor

β̂k if αcor
k ≤ ǫcor and βcor

k > ǫcor

τk otherwise,

(21)

γk+1 =























1 +
2

√
α̂kβ̂k

α̂k+β̂k
if αcor

k > ǫcor and βcor
k > ǫcor

1.9 if αcor
k > ǫcor and βcor

k ≤ ǫcor

1.1 if αcor
k ≤ ǫcor and βcor

k > ǫcor

1.5 otherwise,

(22)

where ǫcor is a quality threshold for the curvature estimates,

while α̂k and β̂k are the spectral stepsizes estimated in Sec-

tion 4.3. The update for τk+1 only uses model parameters

that have been accurately estimated. When the model is

effective for h but not g, we use a large γk = 1.9 to make

the v update conservative relative to the u update. When the

model is effective for g but not h, we use a small γk = 1.1
to make the v update aggressive relative to the u update.

4.5. Applying convergence guarantee

Our convergence theory requires either Assumption 1 or

Assumption 2 to be satisfied, which suggests that conver-

gence is guaranteed under “bounded adaptivity” for both

penalty and relaxation parameters. These conditions can be

guaranteed by explicitly adding constraints to the stepsize

choice in ARADMM.

Algorithm 1 Adaptive relaxed ADMM (ARADMM)

Input: initialize v0, λ0, τ0, γ0, and k0=0
1: while not converge by (7) and k < maxiter do

2: Perform relaxed ADMM, as in (2)–(5)

3: if mod(k, Tf ) = 1 then

4: λ̂k+1 = λk + τk(b−Auk+1 −Bvk)

5: Compute spectral stepsizes α̂k, β̂k using (18)

6: Estimate correlations αcor
k , βcor

k using (20)

7: Update τk+1, γk+1 using (21) and (22)

8: Bound τk+1, γk+1 using (23)

9: k0 ← k
10: else

11: τk+1 ← τk and γk+1 ← γk
12: end if

13: k ← k + 1
14: end while

To guarantee convergence, we simply replace the parame-

ter updates (21) and (22) with

τ̂k+1 =min {τk+1, (1 + Ccg/k2) τk}
γ̂k+1 =min {γk+1, 1 + Ccg/k2}, (23)

where Ccg is some (large) constant. It is easily verified that

the parameter sequence (τ̂k, γ̂k) satisfies Assumption 1. In

practice, the update schemes (21) and (22) converges reliably

without explicitly enforcing these conditions. We use a very

large Ccg such that the conditions are not triggered in the

first few thousand iterations and provide these constraints

for theoretical interests.

4.6. ARADMM algorithm

The complete adaptive relaxed ADMM (ARADMM) is

shown in Algorithm 1. We suggest only updating the stepsize

every Tf = 2 iterations. We suggest a fixed safeguarding

threshold ǫcor = 0.2, which is used in all the experiments in

Section 6. The overhead of the adaptive scheme is modest,

requiring only a few inner product calculations.

5. Proofs of convergence theorems

We now prove that relaxed ADMM converges under As-

sumption 1 or 2. Let

y =

(
u
v

)

∈ R
n+m, z =





u
v
λ



 ∈ R
n+m+p. (24)

We use yk = (uk, vk)
T and zk = (uk, vk, λk)

T to denote

iterates, and y∗ = (u∗, v∗)T and z∗ = (u∗, v∗, λ∗)T de-

note optimal solutions. Set ∆z+k = (∆u+
k ,∆v+k ,∆λ+

k ) :=
zk+1 − zk, and ∆z∗k = (∆u∗

k,∆v∗k,∆λ∗

k) := z∗ − zk, and
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define

f(y) = h(u) + g(v), F (z) =





−ATλ
−BTλ

Au+Bv − b



. (25)

Notice that F (z) is monotone, which means ∀z, z′, (z −
z′)T (F (z)− F (z′)) ≥ 0.

Problem formulation (1) can be reformulated as a varia-

tional inequality (VI). The optimal solution z∗ satisfies

∀z, f(y)− f(y∗) + (z − z∗)TF (z∗) ≥ 0. (26)

Likewise, the ADMM iterates produced by steps (2) and (4)

satisfy the variational inequalities

∀u, h(u)− h(uk+1) + (u− uk+1)
T

(τkA
T (Auk+1 +Bvk − b)−ATλk) ≥ 0, (27)

∀v, g(v)− g(vk+1) + (v − vk+1)
T

(τkB
T (ũk+1 +Bvk+1 − b)−BTλk) ≥ 0. (28)

Using the definitions of y, z, f(y), and F (z) in (24, 25), λ
in (5), and ũ in (3), VI (27) and (28) combine to yield

f(y)− f(yk+1) + (z − zk+1)
T
(

F (zk+1) + Ω(∆z
+

k , τk, γk)
)

≥ 0,

Ω(∆z
+

k , τk, γk) =







γk−1

γk
AT∆λ+

k − τk
γk

ATB∆v+k
0

1

γkτk
∆λ+

k − γk−1

γk
B∆v+k






. (29)

We then apply VI (26), (28), and (29) in order to prove

the following lemmas for our contraction proof, which show

that the difference between iterates decreases as the iterates

approach the true solution. ‘The remaining details of the

proof are in the supplementary material.

Lemma 1. The iterates zk = (uk, vk, λk)
T generated by

ADMM satisfy

(B∆v+k )
T∆λ+

k ≥ 0. (30)

Lemma 2. Let γk ≥ 1. The optimal solution z∗ and iterates

zk generated by ADMM satisfy

2− γk
γk
‖τkB∆v+k +∆λ+

k ‖2

≤γk(‖τkB∆v∗k‖2 + ‖∆λ∗

k‖2)
− (2− γk)(‖τkB∆v∗k+1‖2 + ‖∆λ∗

k+1‖2).

(31)

5.1. Convergence with adaptivity

We are now ready to state our main convergence results.

The proof of Theorem 1 is shown here in full, and leverages

Lemma 2 to produce a contraction argument. The proof of

Theorem 2 is extremely similar, and is shown in the supple-

mentary material.

Theorem 1. Suppose Assumption 1 holds. Then, the iterates

zk = (uk, vk, λk)
T generated by ADMM satisfy

lim
k→∞

‖rk‖ = 0 and lim
k→∞

‖dk‖ = 0. (32)

Proof. Assumption 1 implies

γk
2− γk

τ2k ≤ (1 + η2k)τ
2
k−1 and

γk
2− γk

≤ (1 + η2k). (33)

If γk < 2 as in Assumption 1, then Lemma 2 shows

1

γk
‖τkB∆v+k +∆λ+

k ‖2

≤ γk
2− γk

(τ2k‖B∆v∗k‖2 + ‖∆λ∗

k‖2)

− (τ2k‖B∆v∗k+1‖2 + ‖∆λ∗

k+1‖2) (34)

≤(1 + η2k)(τ
2
k−1‖B∆v∗k‖2 + ‖∆λ∗

k‖2)
− (τ2k‖B∆v∗k+1‖2 + ‖∆λ∗

k+1‖2), (35)

where (33) is used to get from (34) to (35). Accumulating

inequality (35) from k = 0 to N shows

N∑

k=0

N∏

t=k+1

(1 + η2t )
1

γk
‖τkB∆v+k +∆λ+

k ‖2

≤
N∏

k=1

(1 + η2t )(τ
2
0 ‖B∆v∗0‖2 + ‖∆λ∗

0‖2). (36)

Assumption 1 also implies
∏

∞

t=1(1 + η2t ) < ∞, and
∏N

t=k+1(1 + η2t )
1
γk
≥ 1

γk
> 1/2. Then, (36) indicates

∑
∞

k=0 ‖τkB∆v+k +∆λ+
k ‖2 <∞, and

lim
k→∞

‖τkB∆v+k +∆λ+
k ‖2 = 0. (37)

Now, from Lemma 1, (B∆v+k )
T∆λ+

k ≥ 0, and so

lim
k→∞

‖∆λ
+

k ‖2 ≤ lim
k→∞

‖τkB∆v
+

k +∆λ
+

k ‖2 = 0, (38)

lim
k→∞

‖τkB∆v
+

k ‖2 ≤ lim
k→∞

‖τkB∆v
+

k +∆λ
+

k ‖2 = 0. (39)

The residuals rk, dk in (6) satisfy

rk =
1

γkτk
∆λ+

k−1 −
γk − 1

γk
B∆v+k−1, (40)

dk = τkA
TB∆v+k−1, (41)

from which we get

lim
k→∞

‖rk‖ ≤ lim
k→∞

1

γkτk
‖∆λ+

k−1‖

+
γk − 1

γkτ2k−1

‖τk−1B∆v+k−1‖ = 0, and

lim
k→∞

‖dk‖ ≤ lim
k→∞

‖A‖‖τkB∆v+k−1‖

≤ lim
k→∞

√

1 + η2k‖A‖ ‖τk−1B∆v+k−1‖ = 0.
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Similar methods can be used to prove the following about

convergence under Assumption 2. The proof of the following

theorem is given in the supplementary material.

Theorem 2. Suppose Assumption 2 holds. Then, the iterates

zk = (uk, vk, λk)
T generated by ADMM satisfy

lim
k→∞

‖rk‖ = 0 and lim
k→∞

‖dk‖ = 0. (42)

6. Applications

We focus on the following statistical and image process-

ing problems involving non-differentiable objectives: linear

regression with elastic net regularization (EN), low-rank

least squares (LRLS), quadratic programming (QP), con-

sensus ℓ1-regularized logistic regression, support vector ma-

chine (SVM), total variation image restoration (TVIR), and

robust principle component analysis (RPCA). We study sev-

eral vision benchmark datasets such as the extended Yale B

face dataset [13], MNIST digital images [29], and CIFAR10

object images1 [28]. We also use synthetic and benchmark

datasets from [7, 57, 30, 43, 33, 21], which are obtained

from the UCI repository and the LIBSVM page. The ex-

perimental setups for each problem are briefly described

here, and the implementation details are provided in the

supplementary material.

Linear regression with EN regularization Elastic net

(EN) is a modification of the ℓ1-norm (or LASSO) reg-

ularizer that helps dealing with highly correlated vari-

ables [57, 21], and requires solving

min
x

1

2
‖Dx− c‖22 + ρ1‖x‖1 +

ρ2
2
‖x‖22, (43)

where ‖ · ‖1 denotes the ℓ1-norm, D is the data matrix, c
contains measurements, and x is the vector of regression

coefficient.

Low-rank least squares (LRLS) The nuclear norm (the

ℓ1-norm of the matrix singular values) is a convex surrogate

for matrix rank. ADMM has been applied to solve low rank

least squares problems [55, 53]

min
X

1

2
‖DX − C‖2F + ρ1‖X‖∗ +

ρ2
2
‖X‖2F , (44)

where ‖ · ‖∗ denotes the nuclear norm, ‖ · ‖F denotes the

Frobenius norm, D ∈ R
n×m is a data matrix, C ∈ R

n×d

contains measurements, and X ∈ R
m×d contains variables.

ADMM is applied by splitting the regression term and

the non-differentiable regularizer composed of nuclear and

Frobenius norm. LRLS has been used to formulate exemplar

classifiers and discover visual subcategories [53].
1We use the first batch of CIFAR10 that contains 10000 samples.

SVM and QP Support vector machine (SVM) is one of

the most successful binary classifiers for computer vision.

The dual of the SVM is a QP problem,

min
z

1

2
zTQz − eT z

subject to cT z = 0 and 0 ≤ z ≤ C,

where z is the SVM dual variable, Q is the kernel matrix,

c is a vector of labels, e is a vector of ones, and C > 0 [3].

The canonical QP is also considered,

min
x

1

2
xTQx+ qTx subject to Dx ≤ c. (45)

Consensus ℓ1-regularized logistic regression ADMM

has become an important tool for solving distributed op-

timization problems [2]. A typical problem is the consensus

ℓ1-regularized logistic regression

min
xi,z

N∑

i=1

ni∑

j=1

log(1 + exp(−cjDjxi)) + ρ‖z‖1

subject to xi − z = 0, i = 1, . . . , N,

(46)

where xi ∈ R
m represents the local variable on the ith

distributed node, z is the global variable, ni is the number

of samples in the ith block, Dj ∈ R
m is the jth sample, and

cj ∈ {−1,+1} is the corresponding label.

Unwrapped SVM The unwrapped formulation of

SVM [22], which can be used in distributed computing

environments via “transpose reduction” tricks, applies

ADMM to the primal form of SVM to solve

min
x

1

2
‖x‖22 + C

n∑

j=1

max{1− cjD
T
j x, 0}, (47)

where Dj ∈ R
m is the jth sample of training data, and cj ∈

{−1, 1} is the corresponding label. ADMM is applied by

splitting the ℓ2-norm regularizer and the non-differentiable

hinge loss term.

Total variation image denoising (TVID) Total variation

image denoising is often performed by solving [42]

min
x

1

2
‖x− c‖22 + ρ‖∇x‖1 (48)

where c represents given noisy image, and ∇ is the dis-

crete gradient operator, which computes differences between

adjacent image pixels. ADMM is applied by splitting the

ℓ2-norm term and the non-differentiable total variation term.

RPCA Robust principal component analysis (RPCA) has

broad applications in computer vision and imaging [47, 37,

39]. RPCA recovers a low-rank matrix and a sparse matrix

by solving

min
Z,E
‖Z‖∗ + ρ‖E‖1 subject to Z + E = C, (49)
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Table 1. Iterations (and runtime in seconds) for various applications. Absence of convergence after n iterations is indicated as n+.

Application Dataset
#samples ×

#features1

Vanilla

ADMM

Relaxed

ADMM

Residual

balance

Adaptive

ADMM

Proposed

ARADMM

Elastic net

regression

Synthetic 50 × 40 2000+(.642) 2000+(.660) 424(.144) 102(.051) 70(.026)

MNIST 60000 × 784 1225(29.4) 816(19.9) 94(2.28) 41(.943) 21(.549)

CIFAR10 10000 × 3072 2000+(690) 2000+(697) 556(193) 2000+(669) 94(31.7)

News20 19996 × 1355191 2000+(1.21e4) 2000+(9.16e3) 227(914) 104(391) 71(287)

Rcv1 20242 × 47236 2000+(1.20e3) 1823(802) 196(79.1) 104(35.7) 64(26.0)

Realsim 72309 × 20958 2000+(4.26e3) 2000+(4.33e3) 341(355) 152(125) 107(88.2)

Low rank

least squares

Synthetic 1000 × 200 2000+(118) 2000+(116) 268(15.1) 26(1.55) 18(1.04)

German 1000 × 24 2000+(4.72) 2000+(4.72) 642(1.52) 130(.334) 52(.125)

Spectf 80 × 44 2000+(2.70) 2000+(2.74) 336(.455) 162(.236) 105(.150)

MNIST 60000 × 784 200+(1.86e3) 200+(2.08e3) 200+(3.29e3) 200+(3.46e3) 38(658)

CIFAR10 10000 × 3072 200+(7.24e3) 200+(1.33e4) 53(1.60e3) 8(208) 6(156)

QP and

dual SVM

Synthetic 250 × 500 1224(11.5) 823(7.49) 626(5.93) 170(1.57) 100(.914)

German 1000 × 24 2000+(58.8) 2000+(61.8) 1592(45.0) 1393(38.9) 1238(34.9)

Spectf 80 × 44 2000+(.846) 2000+(.777) 169(.070) 175(.086) 53(.026)

Consensus

logistic

regression

Synthetic 1000 × 25 590(9.93) 391(6.97) 70(1.23) 35(.609) 20(.355)

German 1000 × 24 2000+(34.3) 2000+(66.6) 151(2.60) 35(.691) 26(.580)

Spectf 80 × 44 1005(20.1) 667(14.4) 117(1.98) 145(1.63) 85(1.07)

MNIST 60000 × 784 200+(2.99e3) 200+(3.47e3) 200+(1.37e3) 49(536) 28(333)

CIFAR10 10000 × 3072 200+(593) 200+(2.08e3) 200+(1.54e3) 131(165) 19(33.7)

Unwrapping

SVM

Synthetic 1000 × 25 2000+(1.13) 1418(.844) 2000+(1.16) 355(.229) 147(.094)

German 1000 × 24 753(1.88) 560(1.37) 2000+(4.98) 572(1.44) 213(.545)

Spectf 80 × 44 567(.203) 367(.112) 567(.185) 207(.068) 149(.052)

MNIST 60000 × 784 128(130) 118(111) 163(153) 200+(217) 67(71.0)

CIFAR10 10000 × 3072 200+(512) 200+(532) 200+(516) 89(285) 57(143)

Image

denoising

Barbara 512 × 512 262(35.0) 175(23.6) 74(10.0) 59(8.67) 38(5.57)

Cameraman 256 × 256 311(8.96) 208(5.89) 82(2.29) 88(2.76) 35(1.08)

Lena 512 × 512 347(46.3) 232(31.3) 94(12.5) 68(9.70) 39(5.58)

Robust

PCA

FaceSet1 64 × 1024 2000+(41.1) 1507(30.3) 560(11.1) 561(11.9) 267(5.65)

FaceSet2 64 × 1024 2000+(41.1) 2000+(41.4) 263(5.54) 388(9.00) 188(4.02)

FaceSet3 64 × 1024 2000+(39.4) 1843(36.3) 375(7.44) 473(9.89) 299(6.27)

1 #constrains × #unknowns for canonical QP; width × height for image restoration.

where the nuclear norm ‖ · ‖∗ is used to obtain a low rank

matrix Z, and ‖ · ‖1 is used to obtain a sparse error E.

7. Experiments

The proposed AADMM is implemented as shown in Al-

gorithm 1. We also implemented vanilla ADMM, (non-

adaptive) relaxed ADMM, ADMM with residual balancing

(RB), and adaptive ADMM (AADMM) for comparison.

The relaxation parameter for the non-adaptive relaxed

ADMM is fixed at γk=1.5 as suggested in [6]. The parame-

ters of RB and AADMM are selected as in [24, 2, 51]. The

initial penalty τ0=1/10 and initial relaxation γ0=1 are used

for all problems except the canonical QP problem, where

initial parameters are set to the geometric mean of the max-

imum and minimum eigenvalues of matrix Q, as proposed

for quadratic problems in [40].

For each problem, the same randomly generated initial

variables v0, λ0 are used for ADMM and its variant methods.

As suggested by [24, 51], the adaptivity of RB and AADMM

is stopped after 1000 iterations to guarantee convergence.

7.1. Convergence results

Table 1 reports the convergence speed of ADMM and its

variants for the applications described in Section 6. More

experimental results including the table of more test cases,

the convergence curves, and visual results of image restora-

tion and robust PCA for face decomposition are provided in

the supplementary material. Relaxed ADMM often outper-

forms vanilla ADMM, but does not compete with adaptive

methods like RB, AADMM and ARADMM. The proposed

ARADMM performs best in all the test cases.

7.2. Sensitivity to initialization

We study the sensitivity of the different ADMM variants

to the initial penalty (τ0) and initial relaxation parameter (γ0).

Fig. 1 presents iteration counts for a wide range of values

of τ0, γ0, for elastic net regression with synthetic datasets.

In the left and center plots we fix one of τ0, γ0 and vary

the other. The number of iterations needed to convergence

is plotted as the algorithm parameters vary. In the right

plot, we use a grid search to find the optimal τ0 for different
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Figure 1. Sensitivity of convergence speed for the synthetic problem of EN regularized linear regression. (left) sensitivity to the initial

penalty τ0; (middle) sensitivity to relaxation γ0; (right) sensitivity to relaxation γ0 when optimal τ0 is selected by grid search.
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Figure 2. Sensitivity of convergence speed to safeguarding thresh-

old ǫcor for proposed ARADMM. Synthetic problems (’cameraman’

for TVIR, and ’FaceSet1’ for RPCA) of various applications are

studied. Best viewed in color.

values of γ0. Fig. 1 (left) shows that adaptive methods are

relatively stable with respect to the initial penalty τ0, while

ARADMM outperforms RB and AADMM in all choices

of initial τ0. Fig. 1 (middle) suggests that the relaxation

γ0 is generally less important than τ0. When a bad value

of τ is chosen, it is unlikely that a good choice of γ can

compensate. The proposed ARADMM that jointly adjusts

τ, γ is generally better than simply adding the relaxation to

the existing adaptive methods RB and AADMM.

Fig. 1 (right) shows the sensitivity to γ when using a

grid search to choose the optimal τ0. This optimal τ0 sig-

nificantly improves the performance of vanilla ADMM and

relaxed ADMM (which use the same τ0 for all iterations).

Even when using the optimal stepsize for the non-adaptive

methods, ARADMM is superior to or competitive with the

non-adaptive methods. Note that this experiment is meant

to show a best-case scenario for the non-adaptive methods;

in practice the user generally has no knowledge of the opti-

mal value of τ. Adaptive methods achieve optimal or near-

optimal performance without an expensive grid search.

7.3. Sensitivity to safeguarding

Finally, Fig. 2 presents iteration counts when applying

ARADMM with various safeguarding correlation thresholds

ǫcor. When ǫcor = 0, the calculated adaptive parameters

based on curvature estimations are always accepted, and

when ǫcor = 1 the parameters are never changed. The pro-

posed AADMM method is insensitive to ǫcor and performs

well for a wide range of ǫcor ∈ [0.1, 0.4] for various applica-

tions, except for unwrapping SVM and RPCA. Though tun-

ing such “hyper-parameters” may improve the performance

of ARADMM for some applications, the fixed ǫcor = 0.2
performs well in all our experiments (seven applications

and over fifty test cases, a full list is in the supplementary

material). The proposed ARADMM is fully automated and

performs well without parameter tuning.

8. Conclusion

We have proposed an adaptive method for jointly tuning

the penalty and relaxation parameters of relaxed ADMM

without user oversight. We have analyzed adaptive re-

laxed ADMM schemes, and provided conditions for which

convergence is guaranteed. Experiments on a wide range

of machine learning, computer vision, and image process-

ing benchmarks have demonstrated that the proposed adap-

tive method (often significantly) outperforms other ADMM

variants without user oversight or parameter tuning. The

new adaptive method improves the applicability of relaxed

ADMM by facilitating fully automated solvers that exhibit

fast convergence and are usable by non-expert users.
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