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Abstract

Multi-instance multi-label (MIML) learning has many

interesting applications in computer visions, including

multi-object recognition and automatic image tagging.

In these applications, additional information such as

bounding-boxes, image captions and descriptions is of-

ten available during training phrase, which is referred as

privileged information (PI). However, as existing works on

learning using PI only consider instance-level PI (privi-

leged instances), they fail to make use of bag-level PI (priv-

ileged bags) available in MIML learning. Therefore, in this

paper, we propose a two-stream fully convolutional net-

work, named MIML-FCN+, unified by a novel PI loss

to solve the problem of MIML learning with privileged

bags. Compared to the previous works on PI, the pro-

posed MIML-FCN+ utilizes the readily available privi-

leged bags, instead of hard-to-obtain privileged instances,

making the system more general and practical in real world

applications. As the proposed PI loss is convex and SGD-

compatible and the framework itself is a fully convolutional

network, MIML-FCN+ can be easily integrated with state-

of-the-art deep learning networks. Moreover, the flexibil-

ity of convolutional layers allows us to exploit structured

correlations among instances to facilitate more effective

training and testing. Experimental results on three bench-

mark datasets demonstrate the effectiveness of the proposed

MIML-FCN+, outperforming state-of-the-art methods in

the application of multi-object recognition.

1. Introduction

In the traditional supervised learning, each training in-

stance is typically associated with one label. With the rapid

development of deep learning [12], such single-instance

single-label classification problem is nearly solved, given

abundant well-labelled training data. For example, for

single object recognition tasks, such as ILSVRC, sev-

eral methods have already achieved super-human perfor-

mance [7, 8, 10]. However, in many real-world applications,

instead of training instances, we often encounter the prob-

lem of training bags, each of which usually contains many

instances, e.g., frames in a video clip, object proposals of an

image, which is referred as multi-instance setting. In addi-

tion, to accurately describe a bag, we often need to associate

multiple labels or tags to it, which is referred as multi-label

setting. Such multi-instance multi-label (MIML) learning

setting [37] is more general, but more challenging.

MIML learning has many applications in computer vi-

sion. For example, in multi-object recognition and auto-

matic image tagging problems, an image can be decom-

posed into many object proposals, where we can treat each

image as a bag and each of its proposals as an instance in

the bag, as illustrated in Fig.1. The MIML learning prob-

lem essentially is, given training bags with only bag-level

labels, how to learn an effective model that can accurately

assign multiple labels to new bags. MIML learning prob-

lems have attracted significant attentions in the past few

years [25, 32, 21, 2]. With the release of large scale multi-

label datasets such as YFCC100M [26] and Google Open

Images [11], it will stimulate more large-scale MIML learn-

ing studies.

On the other hand, in many applications, additional in-

formation is often available in the training phrase. Vap-

nik and Vashist [28] referred such additional information

as privileged information (PI) and showed that PI can be

utilized as a teacher to train more effective models in tra-

ditional supervised learning problems. This motivates us

to incorporate PI into MIML learning problem. However,

there are two main obstacles hinging us from applying

learning using privileged information (LUPI) paradigm to

MIML problems.

First of all, existing works on privileged information

only consider instance-level PI [28, 27, 17, 14]. This might
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Figure 1: A practical example of multi-instance multi-label

(MIML) learning problem. Here we consider the image as

a bag, the proposals extracted from the image as instances,

and the objects contained in the image as bag labels.

not be a problem for traditional supervised learning, but for

most MIML tasks, instance-level PI, where each training in-

stance in each training bag must have a corresponding priv-

ileged instance, is hard to obtain. In contrast, bag-level PI

is much easier to acquire, and is often already available.

Take the aforementioned multi-object recognition problem

as an example. It is hard to obtain privileged information

for each object proposal we extract, but for images, there

are bounding-boxes, captions, descriptions, which can all

be used as bag-level PI. Another example could be video

recognition, where each clip can be viewed as a bag and

frames or sub-clips in each clip, containing different ob-

jects, activities, can be viewed as instances in the bag. It is

clear that bag-level PI such as video descriptions are much

easier to obtain. Therefore, in MIML learning with privi-

leged information, it is more general and meaningful to con-

sider bag-level PI, which is lacking in the current literature.

Secondly, most existing works on PI are still based on the

original SVM+ formulation, where PI is used as slack func-

tions. Although this formulation has many theoretical and

practical merits [27], it is hard to incorporate it into state-

of-the-art deep learning paradigm in an end-to-end fashion

as the SVM+ formulation is not stochastic gradient descent

(SGD) compatible. Thus, existing PI works fail to benefit

from rapid developments of deep learning.

In this paper, we address these two problems by propos-

ing a two-stream fully convolutional network, which we

refer as MIML-FCN+. In the proposed framework, each

stream handles one source of information, namely training

bags and privileged bags, respectively. The two-stream net-

works are unified by a novel PI loss, which follows the high

level idea of SVM+ [28] but with a totally different real-

ization oriented for deep learning. Specifically, we propose

to utilize privileged bags to model training losses and use

it as a convex regularization term, which facilitates SGD-

compatible loss and end-to-end training. In addition, moti-

vated by the work [35], which shows exploiting structured

correlations among instances can help MIML learning, we

further propose to construct a graph for each bag and in-

corporate the structured correlations into our MIML-FCN+

framework, thanks to the structure of fully convolutional

networks, where filter sizes and step sizes of the convolu-

tional layers can be easily adjusted.

The major contributions of this paper are threefold. First,

we propose and formulate a new problem of MIML learn-

ing with privileged bags, which is a much more practical

setting in real world applications. To the best of our knowl-

edge, this is the first work exploiting privileged bags instead

of privileged instances. Second, we propose a two-steam

fully convolution network with a novel PI loss, MIML-

FCN+, to solve the MIML+PI learning problem. Our so-

lution is fully SGD-compatible and can be easily integrated

with other state-of-the-art deep learning networks such as

CNN and RNN. Our MIML-FCN+ is flexible to combine

different types of information, e.g. images as training bags

and texts as privileged bags. It can also be easily extended

to make use of privileged instances if available. Third,

we further propose a way to incorporate graph-based inter-

instance correlations into our MIML-FCN+.

2. Related Works

Multi-instance Multi-label Learning: During the past

decade, many MIML algorithms have been proposed [18,

36, 37, 20, 19]. For example, MIMLSVM [36] degenerates

the MIML problem into solving the single-instance multi-

label problem while MIMLBoost [36] degenerates MIML

into multi-instance single-label learning, which suggest that

MIML is closely related to both multi-instance learning and

multi-label learning. Ranking loss had been shown to be

effective in multi-label learning, and thus Briggs et al. [3]

proposed to optimize ranking loss for MIML instance an-

notation. In terms of generative methods, Yang et al. [33]

proposed a Dirichlet-Bernoulli alignment based model for

MIML learning problem. In contrast, in this work we con-

sider using privileged information to help MIML learning

under the deep learning paradigam, which has not been ex-

plored before.

Many computer vision applications such as scene clas-

sification, multi-object recognition, image tagging, and ac-

tion recognition, can be formulated as MIML problelms.

For instance, Zha et al. [34] proposed a hidden conditional

random field model for MIML image annotation. Zhou

et al. [36] applied MIML learning for scene classifica-

tion. Several works [21, 32, 2] also implicitly exploited the

MIML nature of multi-object recognition problem.

Learning Using Privileged Information (LUPI): LUPI

assumes there are additional data available during training,

i.e. privileged information (PI), which are not available in

testing. Vapnik and Vashist [28] proposed an SVM+ for-

mulation that exploits PI as slack variables during training

to “teach” students to learn better classification model. The
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idea was later developed into two schemes: similarity con-

trol and knowledge transfer [27]. LUPI has also been uti-

lized in metric learning [6], learning to rank [24] and multi-

instance learning [14]. A few works have applied PI to com-

puter vision applications. For example, Li et al. [14] applied

PI for web images recognition. Sharmanska et al. [24] ap-

plied PI for image ranking and retrieval. However, most of

the existing PI works consider only instance-level PI, are

still based on SVM+ formulation, which is hard to be in-

corporated into a deep learning framework in an end-to-end

fashion. In this work, we address all these limitations by a

two-stream fully convolutional network and a new PI loss.

3. Proposed Approach

In the context of multi-instance and multi-label (MIML)

learning, assume there are n bags in the training data, de-

noted by {Xi, Yi}
n
i=1, where each bag Xi has mi instances

{xi,j}
mi

j=1 and Yi contains the labels associated with Xi.

We represent Yi as a binary vector of length C, where C

is the number of labels. The k-th dimension Yi(k) = 1 if

k-th label ck is associated with at least one instance in Xi;

otherwise Yi(k) = −1. In other words, denoting yi,j as

the label vector of instance xi,j , Yi(k) = 1 if and only if

∃j,yi,j(k) = 1. Note that in common MIML setting, the

instance-level labels yi,j are usually assumed not available.

In learning using privileged information (LUPI)

paradigm, we further assume that for each training bag,

there exists a privileged bag X∗
i . Xi and X∗

i are two views

of the same real world image. X∗
i can contain m∗

i instances

{x∗
i,j}

m∗

i

j=1. Here m∗
i is generally different with mi, and

there is no instance-level correspondence between training

data and privileged information. This is one fundamental

difference between our work and previous LUPI studies

that always assume each training instance xi,j has a

corresponding privileged instance x∗
i,j .

3.1. MIML Learning through FCN

MIML: We start with reviewing the general MIML

learning pipeline. Given a bag X , the goal of MIML learn-

ing is essentially to learn a model F (X) such that the dif-

ference between F (X) and the true label Y is small. An

MIML system F (·) generally consists of two components:

a non-linear feature mapping component and a classifica-

tion component. In the feature mapping component, each

d-dimensional training instance x is mapped from the in-

put space to the feature space, where training data could be

linearly separable, by a non-linear mapping function φ(·).
In the classification component, each instance is first

mapped from the feature space to the label space by

f(x) = φ(x)W, (1)

where W is a d′ × C weight matrix classifying the d′-dim

mapped instance φ(x) to a label vector. Then, the predicted

instance-level labels is transferred to the bag-level labels.

According to the MIML learning definition, the relation be-

tween instance-level labels yj and bag-level labels Y can

be expressed either as:

Y = max
j

(yj), (2)

where max is the per-dimension max operation, or alterna-

tively as a set of linear constraints [1]:

{

∑

j

yj(k)+1

2 ≥ 1 if Y (k) = 1,

yj(k) = −1, ∀j if Y (k) = −1.
(3)

Let us consider the first case, i.e., using Eq.(2) to map

instance-level labels to bag-level labels. With this relation,

the bag-level label prediction becomes

F (X) = max
x∈X

φ(x)W. (4)

Thus, the objective function for MIML learning can be writ-

ten as

min L(Y, F (X)), (5)

where L(·) is a suitable multi-label loss such as square loss

or ranking loss.

MIML-FCN: It is not difficult to see that the above for-

mulated MIML learning can be realized via a neural net-

works. First, in terms of feature mapping, the previous

MIML studies usually project the data from input space into

feature space by pre-defined project functions, such as ker-

nels [1] and Fisher vectors [29], or learned linear projec-

tions [9], which are incompatible with neural networks. On

the other hand, the combination of multiple layers of fully

connected layers and non-linear activation functions has

proven to be a powerful non-linear feature mapping [4, 22].

Thus, in our framework, we employ multiple convolutional

layers and ReLU layers as our feature mapping component.

The reason that we use fully convolutional networks (FCN)

without including any fully connected layers is that FCN

is more flexible and can handle any spatial resolution [21],

which is needed for the considered MIML problem since

the number of instances in each bag varies.

Particularly, with φl(x) = g(x,Wl) + bl denoting the l-

th convolutional layer, where x is the input, g is the convo-

lution operation, Wl is the parameters and bl is the bias, and

σ(·) denoting the non-linearity, the feature mapping compo-

nent φ of our framework can be expressed as:

φ(x) = σ(φL(. . . σ(φ2(σ(φ1(x)))) . . . )), (6)

if there are in total L layers. For 1×1 filters, the convolution

operator g is just a dot-product.

Other operations in MIML can also be easily mapped

into FCN. Specifically, the classification component in (4)
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Figure 2: An example of our proposed MIML-FCN archi-

tecture. The input is a bag of mi instances, typically orga-

nized as 1 ×mi × d (The feature dimension / channel d is

usually omitted for simplicity). MIML-FCN typically con-

tains a few layer-pairs (e.g. 2 layer-pairs here) of 1×1 conv

layer and ReLu layer for feature mapping, one 1 × 1 conv

layer for classification, one global pooling layer (e.g. max

pooling here) and one loss layer.

is realized by a convolutional layer with 1 × 1 filter size

and parameters W to project the learned feature to the label

space, followed by a pooling layer to extract per-bag predic-

tion. The loss function in (5) is realized by a loss layer with

appropriate SGD-compatible multi-label loss such as square

loss [29, 31] and ranking loss [29, 32]. Fig. 2 shows an ex-

ample of our proposed MIML-FCN architecture, which typ-

ically consists of a few layer-pairs (e.g. 2 layer-pairs here)

of 1×1 conv layer and ReLu layer for feature mapping, one

1× 1 conv layer for classification, one global pooling layer

(e.g. max pooling here) and one loss layer.

We would like to point out that similar network struc-

ture has been used in several previous works on multi-object

recognition and weakly supervised object detection [21, 2],

while we explicitly use such structure for MIML and more

importantly we will extend it to incorporate privileged

information as well as structured correlations among in-

stances.

3.2. MIMLFCN with Privileged Bags

Training the proposed MIML-FCN might not be as easy

and straightforward as training a single-label CNN, as the

MIML learning itself is by definition non-convex. As a re-

sult, the framework might not reach optimal classification

accuracies even if the hyperparameters are carefully tuned.

Fortunately, in many applications there often exists addi-

tional information, referred as privileged information (such

as image captions in multi-object recognition), in training

stage that can help us learn a better model.

SVM+: Learning using privileged information (LUPI)

paradigm was first introduced by Vapnik and Vashist [28].

They utilized privilege information as the slack variables

in the SVM formulation, called SVM+. Specifically, their

(linear) SVM+ objective function is:

min
w,b,w∗,b∗

1
2 (‖w‖+ γ‖w∗‖) + C

∑n

j=1 ξ(x
∗
j )

s.t. yj(wxj + b) ≥ 1− ξ(x∗
j ), ξ(x

∗
j ) ≥ 0, ∀i,

(7)

where γ and C are the trade-off parameters, wxj + b is the

classification model, ξ(x∗
j ) = w∗xj

∗+b∗ is the slack func-

tion, replacing the slack variables ξj in the original SVM

formulation. This slack function acts as a teacher by cor-

recting the concepts of similarity of original training data

by privileged information during training process.

Although LUPI paradigm has many good theoretical and

practical merits [28, 27, 17], directly applying this formula

to MIML learning setting is not plausible due to two main

problems. Firstly, in most MIML problems, instance-level

PI, or privileged instances, is difficult to obtain. The pre-

vious work [14] that extends SVM+ directly to MISVM+

requires privileged instances, which greatly limits its appli-

cable areas. In contrast, bag-level privileged information,

or privileged bags, is much easier to get and often readily

available. Secondly, Eq.(7) is relatively difficult to solve

compared to traditional SVM. Although there are efforts on

developing new dual coordinate descent algorithm to im-

prove the training efficiency [13], unifying LUPI and deep

learning in an end-to-end fashion is still not tackled.

MIML-FCN+: To overcome the obstacles, we construct

a two-stream network, named MIML-FCN+. The first

stream models training bags (same as MIML-FCN), and

the second stream models the privileged bags. With this

configuration, our framework not only effectively utilizes

privileged bags, but also allows the flexibility to deal with

different types of data. For instance, if the training bags are

images and privileged bags are texts, we clearly need to map

these data to different feature spaces in order to effectively

extract knowledge, for which our two-stream networks can

be configured accordingly. We could even employ RNN if

the privileged information is text.

With MIML-FCN+, we need an SGD-compatible PI

loss to replace the original loss so that we can utilize priv-

ileged bags as “teachers” during training. Since dealing

with slack variables is difficult, inspired by the high level

idea of [28], we propose to utilize privileged information to

model the loss of training data, penalize the difference of

PI modelled loss and true loss, and add the difference as a

regularization term to Eq.(5).

Specifically, assume that for each training bag Xi, we

have a privileged bag X∗
i . We use a second stream of net-

work (called slack-FCN) to model privileged bags. Com-

pared to the first stream of network (called loss-FCN),

which models the training bags, the goal of the second

stream is not to learn a classification model, but to model
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the loss of the first stream. Denote the output of the second

stream for an input privileged bag X∗ as F ∗(X∗), the two

streams share the same loss layer defined by:

min L(Y, F (X)) + λ‖L(Y, F (X))− F ∗(X∗)‖22, (8)

where ‖ · ‖2 is the L2 norm.

In SVM+, privileged information is used to model slack

variables, which can be viewed as a set of tolerance func-

tions that allows the margin constraints to be violated. In

the proposed MIML-FCN+, we make use of this idea and

utilize privileged information to approximate classification

error of original training data. On one hand, slack-FCN

models the difficulty of classifying training bags with priv-

ileged information. On the other hand, slack-FCN can pro-

vide a way to regularize the classification errors to avoid

over-fitting.

The proposed MIML-FCN+ can be optimized in an al-

ternating fashion. Specifically, we update the loss-FCN

while fixing the parameters of slack-FCN until it converges,

and subsequently update slack-FCN while fixing the param-

eters of loss-FCN. This process is repeated for several times

until the whole system converges.

3.3. Utilizing Structured Correlations among In
stances

In the previous sections, we treat instances in a bag as

independently and identically distributed (i.i.d) samples by

using 1 × 1 filter in the convolutional layers. The assump-

tion ignores the fact that instances in a bag are rarely in-

dependent , and correlations among instances often contain

structured information. Considering object proposals from

an image as an example, these proposals are clearly cor-

related as there exist large overlaps among them. Zhou et

al. [35] showed that treating instances as non-i.i.d samples

could be helpful for learning more effective classifier. Their

MIGraph and miGraph methods explicitly or implicitly use

graph to exploit the structured correlations among instances

in each bag.

Our MIML-FCN+ framework is flexible to incorpo-

rate such structured correlations among instances since our

framework is based on FCN, where the filter sizes of con-

volutional layers can be easily adjusted to accommodate

graph input. Specifically, we first construct a Nearest-

Neighbour (NN) graph for each bag, which is a simple and

effective way to capture correlations among instances in

each bag. Assume for each vertex in the graph, i.e., each

instance, there exist k edges connecting to other vertices,

i.e., its k nearest neighbours. We can organize this graph

as a 3D tensor and use it as the input to our system. The

dimensionality of the tensor will be k ×mi × d, where mi

is the number of instances in bag Xi, and d is the dimen-

sion of each instance. Instead of using 1 × 1filter for the

first convolutional layer, we use k × 1 filters. In this way,

we essentially utilize not only each instance itself, but also

its k nearest neighbours in the graph. By treating each in-

stance as a connected vertex in the graph, we could poten-

tially learn a more robust network.

4. Multi-object Recognition: A Practical Ex-

ample

In this section, we use multi-object recognition as a prac-

tical example to show how to apply our proposed MIML-

FCN+ framework. We also validate the performance of the

proposed MIML-FCN+ on this application in the experi-

ment section.

Multi-object recognition refers to recognizing multiple

objects from one single image. As the objects could be

from different locations, scales and categories, it is natural

to extract object proposals from training images. Thus, for

training data, we refer each image as a bag X and feature

extracted from the proposals in the image as instances in

the bag. Particularly, we utilize ROI-pooled CNN features

as features for proposals as in [23]. We stack our MIML-

FCN+ framework on top of ROI-pooled CNN and train the

entire system end-to-end.

Bounding boxes as PI: For privileged bags, we utilize

two different types of privileged information. The first type

of privileged information is bounding boxes for objects. In

order to make of use of this information, we propose a PI

pooling layer to replace the global max pooling in the slack-

FCN, as shown in Fig. 3(a). This PI pooling layer identifies

true positive proposals that have ≥ 0.5 IoU with ground

truth bounding boxes and average-pool the scores of these

proposals so as to better exploit the key instances in the

bag. For negative proposals, PI pooling layer sticks with

max-pooling. Mathematically, this PI pooling layer can be

defined as:

F ∗(k) =

{ 1
|Pk|

∑

j∈Pk
ỹ∗
j (k) if Y (k) = 1,

maxj ỹ
∗
j (k) if Y (k) = −1,

(9)

where Pk is the set of proposals that have ≥ 0.5 IoU with

ground truth bounding boxes of k-th category, ỹ∗
j (k) is the

predicted instance or proposal level scores in the slack-FCN

for the j-th proposal and k-th category, F ∗(k) is the pre-

dicted bag level score in the slack-FCN for the k-th cate-

gory, and Y (k) is the corresponding ground-truth for the

loss-FCN.

Note that the proposed PI pooling can only be used in

slack-FCN, since it is only available in training but not in

testing. Considering only the pooling layer is changed in

slack-FCN, both loss-FCN and slack-FCN can share the

same feature extraction network, i.e. VGG-16 with ROI

pooling as shown in Fig. 3(a). Also, only one conv and

Relu layer-pair is used in both loss-FCN and slack-FCN for

feature mapping, compared with the two layer-pairs used in
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Figure 3: The proposed MIML-FCN+ combined with

VGG-16 with ROI pooling for multi-object recognition. (a)

with bounding boxes as PI; (b) with image captions as PI.

Fig. 2. This is because empirically we find one conv and

Relu layer-pair performs better.

Image captions as PI: The second type of privileged

information is image captions. Considering one image con-

tains multiple captions, we refer all captions of an image as

a privileged bag and each individual caption as one instance.

To better represent these captions, we extract work2vec fea-

tures from each word and use the weighted-averaged fea-

ture as the representation for each sentence. Subsequently,

we feed these features into our slack-FCN, as shown in

Fig. 3(b). Note that it is also possible to use a RNN to en-

code each caption and then append our slack-FCN, which

will allow the whole system end-to-end trainable.

We also need to decide what type of loss is suitable for

training the proposed networks for multi-object recognition.

In this research, we consider two losses: square loss and

label ranking loss.

Square Loss: The previous works [29, 32] have shown

that square loss can be a very strong baseline for multi-label

learning. Thus, we employ square loss as one configuration

for our framework. Specifically, the general cost function

in (8) now becomes

min ‖Y − F (X)‖22 + λ‖‖Y − F (X)‖22 − F ∗(X∗)‖22,
(10)

for which the gradients with respect to F (X) and F ∗(X∗)
are straightforward to compute.

Label Ranking Loss: Huang et al. [9] proposed an ap-

proximated label ranking loss for the triplet (X, y, ȳ), where

X is an input bag, y is one of its relevant labels, and ȳ is one

of its irrelevant label. The key idea of this loss is to learn a

model so that for every training bag, its relevant labels rank

higher than its irrelevant labels by a margin. Specifically,

the loss is defined by [9]:

Lr(X, y, ȳ) = ǫ(X, y) [1 + Fȳ(X)− Fy(X)]+

≈

{

0 if ȳ is not violated;

SȲ ,v(1 + Fȳ(X)− Fy(X)) otherwise

(11)

where SȲ ,v is a normalization term [9]. To train Eq.(11) in

SGD-style, a triplet of (X, y, ȳ) can be randomly sampled

at each iteration, and the gradients of Eq.(11) can be easily

calculated and backpropagated.

For our MIML-FCN+, instead of the triplet (X, y, ȳ),
we sample a quadruplet (X,X∗, y, ȳ) at each iteration, and

optimize:

min Lr(X, y, ȳ) + λ‖Lr(X, y, ȳ)− F ∗(X∗, y, ȳ)‖22.
(12)

Lastly, after training the proposed MIML-FCN+, we use

only the loss-FCN during testing.

5. Experiments

In this section, we validate the effectiveness of the

proposed MIML-FCN+ framework on three widely used

multi-label benchmark datasets.

5.1. Datasets and Baselines

We evaluate our method on the PASCAL Visual Ob-

ject Calssess Challenges (VOC) 2007 and 2012 datasets [5]

and Microsoft Common Objects in COtext (COCO)

dataset [16]. The details of these datasets are listed in Ta-

ble 1. We use the train and validation sets of VOC datasets

for training, and test set for testing. For MS COCO, we

use the train2014 set for training, and val2014 for testing.

For VOC datasets, we use bounding boxes as privileged in-

formation with the PI pooling layer as discussed in 4. For

MS COCO dataset, we use two types of PI, bounding boxes

and image captions. The evaluation metric used is average

precision (AP) and mean average precision (mAP).

We compare against several state-of-the-art methods for

MIML learning,
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Table 1: Dataset Information

Dataset #Train Bags #Test Bags #Train Instances #Labels #Avg Labels

VOC 2007 5011 4952 2.5M 20 1.4

VOC 2012 11540 10991 5.7M 20 1.4

MS COCO 82783 40504 41M 80 3.5

• MIMLFAST [9]: A fast and effective MIML learning

method based on approximate label ranking loss as de-

scribed in the previous section. MIMLfast first projects

each instance to a shared feature space with linear pro-

jection, then learns K sub-concepts for each label and

selects the sub-concept with maximum score. MIML-

fast also employs global max to obtain bag-level score.

The main difference between their method and our base-

line MIML-FCN is that our feature mapping can be non-

linear.

• MIFV [30]: A Fisher vector (FV) based MIL learning

method that encodes each bag to a single Fisher vector,

and then uses the ranking loss or square loss to train a

multi-label classifier on the FVs.

• RANKLOSSSIM [3]: an MIML learning extension of

the ranking SVM formulation.

There exist other MIML learning methods such as

MIMLSVM, MIMLBoost [36] and KISAR [15], but they

are too slow for our large-scale applications. Other than

the MIML learning methods, we also compare our MIML-

FCN+ framework with the state-of-the-art approaches for

multi-object recognition that do not formulate the task as

MIML learning problem, including VeryDeep [25], WS-

DDN [2], and the MVMI framework [32]. However, we

did not compare with the existing PI methods such as

SVM+ [28] and sMIL+ [14], since they can only deal with

privileged instances but not privileged bags. As far as we

know, our proposed MIML-FCN+ is the only method that

can make use of privileged bags.

For our own MIML-FCN+ framework, we consider

three different variations:

• MIML-FCN: Basic network without PI.

• MIML-FCN+: Two stream networks, loss-FCN and

slack-FCN, using either bounding boxes as PI, denoted

as MIML-FCN+BB, or image captions as PI, denoted

as MIML-FCN+CP.

• G-MIML-FCN+: Two stream networks utilizing NN

graphs. It also has two versions: G-MIML-FCN+BB

and G-MIML-FCN+CP.

5.2. Settings and Parameters

Following the discussions in Section 4, we consider each

image from the datasets as a bag. For each image, we ex-

tract maximum 500 proposals using Regional Proposal Net-

work (RPN) [23], each of which is considered as one in-

0 1 2

Number of Non-linear Mapping Layers

85.5

86

86.5

87

87.5

88

88.5

89

89.5

90

90.5

m
A

P

Square-NoDropout

Square-Dropout

Rank-NoDropout

Rank-Dropout

Figure 4: Results of our MIML-FCN method under dif-

ferent network configurations on VOC 2007 dataset. The

x-axis represents the number of convolutional-ReLU layer-

pairs as non-linear feature mapping. ‘Square-NoDropout’:

square loss without dropout; ‘Square-Dropout’: square

loss with dropout; ‘Rank-NoDropout’: label ranking loss

without dropout; ‘Rank-Dropout’: label ranking loss with

dropout.

stance in the bag. This results in millions of training in-

stances even for the relatively small VOC 2007 dataset.

For feature extraction, we utilize the network architec-

ture of Faster R-CNN [23]. Basically, our feature extrac-

tion network is the VGG-16 network [25] with ROI pooling

layer, with the removal of all the classification / detection

related layers. For fair comparison, all methods we com-

pare are using these same features, although some methods

likes our MIML-FCN+ and WSDDN [2] can be integrated

with the feature extraction network and trained end-to-end.

Our basic MIML-FCN consists of one convolutional

layer, one ReLU layer, one classification layer, one pool-

ing layer and one loss layer, as shown in Fig. 3. The con-

volutional layer contains 2048 filters in total. We tested a

few possible numbers of filters, such as {4096, 2048, 1024}
and found out that 2048 achieves slightly better accuracies.

We also study the effects of different number of convolu-

tion and ReLu layer-pairs, effects of dropout, as well as the

differences between square loss and label ranking loss. The

results are presented in Fig.4. From these results, we decide
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Table 2: Comparisons of classification results (in %) of

state-of-the-art approaches on VOC 207, VOC 2012 and

MS COCO datasets. The upper part shows results from

other MIML learning methods, the middle part shows state-

of-the-art recognition results and the lower part shows re-

sults from the proposed MIML-FCN+ and its variations.

VOC 2007 VOC 2012 MS COCO

RANKLOSSSIM[3] 87.5 87.8 -

MIFV [30] 88.9 88.4 62.5

MIMLFAST [9] 87.4 87.5 61.5

WSSDN [2] 89.7 89.2 63.1

VERYDEEP [25] 89.7 89.3 62.6

MVMI [32] 92.0 90.7 63.7

MIML-FCN 90.2 89.8 63.5

MIML-FCN+BB 92.4 91.9 65.6

MIML-FCN+CP - - 64.6

G-MIML-FCN+BB 93.1 92.5 66.2

G-MIML-FCN+CP - - 65.4

to choose one convolutional-ReLU layer-pair with square

loss.

Our main hyperprameter is the tradeoff parameter λ,

which is tune by cross-validation in a small subset of the

training data. The other important hyperparameter is the

nearest neighour number k in G-MIML-FCN+, which we

set to 5 in all our experiments. For other methods, we follow

the parameter tuning specified in their papers if available.

5.3. Classification Results

Table 2 reports our experimental results compared with

state-of-the-art methods on the three benchmark datasets.

Comparing our basic network MIML-FCN with state-

of-the-art MIML methods (upper part of the table), we can

see that our MIML-FCN achieves significantly better ac-

curacies. Specifically, MIML-FCN achieves around 1.2%
performance gain over miFV, which uses Fisher vector as

a holistic representation for bags. This suggests that us-

ing neural networks for MIML problem can better encode

holistic representation. One interesting observation is that,

if we remove the first convolutional and ReLU layers of

our MIML-FCN, it becomes worse than miFV. This phe-

nomenon confirms the effectiveness of non-linear mapping

component in our system. For MIMLFAST, the main differ-

ence is that we employ square loss instead of label ranking

loss and we have a non-linear ReLU function. Our MIML-

FCN obtains more than 2% accuracy gain over MIML-

FAST, which once again confirms the effectiveness of non-

linear mapping over linear mapping.

For comparisons with other state-of-the-art recognition

methods (middle part of the table), it can be seen that our

basic MIML-FCN achieves similar results as WSDDN, as

the principles behind both methods are similar. In con-

trast, instead of treating the task as MIML problem, VERY-

DEEP [25] just treats it as multiple single label problems,

where it uses multiple images at different scales as network

input, concatenates all the features from different scales

as the final representations and then learns multiple bi-

nary classifiers from the representations. Both our basic

network MIML-FCN and WSSDN achieve better perfor-

mance than VeryDeep.

More importantly, Table 2 demonstrates the effective-

ness of using privileged information. Note that since cap-

tions are only available in MS COCO dataset, MIML-

FCN+CP is only applied on COCO. From the table, we

can see that MIML-FCN+BB achieves around 2% perfor-

mance gain over MIML-FCN on all three datasets, con-

firming the effectiveness our privileged bag idea. Al-

though MIML-FCN+CP is not as effective as MIML-

FCN+BB, it still outperforms MIML-FCN. Compar-

ing MIML-FCN+BB with the state-of-the-art multi-view

multi-instance (MVMI) framework [32], both methods

make use of bounding boxes, where our framework utilizes

BB as PI while their framework implicitly uses BB as label

view in the multi-view setup. Note that the results shown

for [32] in Table 2 is a fusion of their system and VeryDeep,

but our MIML-FCN+BB still achieves better performance.

In addition, comparing the results between MIML-

FCN+BB and G-MIML-FCN+BB and between MIML-

FCN+CP and G-MIML-FCN+CP, we can see that by fur-

ther exploiting inter-instance correlations, our framework

can perform even better.

6. Conclusion

In this paper, we have proposed a two-stream fully

convolutional network, named MIML-FCN+, for multi-

instance multi-label learning with privileged bags. Com-

pared with existing works on PI, we explored privileged

bags instead of privileged instances. We also proposed a

novel PI loss, which is similar to the high level idea of

SVM+, but is SGD-compatible and can be integrated into

deep learning networks. We have also explored the ben-

efits of making use of structured correlations among in-

stances by simple modifications to the network architec-

ture. We demonstrated the effectiveness of our system by a

practical example of multi-object recognition. We achieved

significantly better performance in all the three benchmark

datasets containing millions of instances. For future direc-

tions, we intend to explore more possible applications as

well as other kinds of privileged information. We could

also study the theoretical differences between the proposed

PI loss and SVM+ loss.
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