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Abstract

We introduce a Multiple Granularity Analysis framework

for video segmentation in a coarse-to-fine manner. We cast

video segmentation as a spatio-temporal superpixel label-

ing problem. Benefited from the bounding volume provid-

ed by off-the-shelf object trackers, we estimate the fore-

ground/background super-pixel labeling using the spatio-

temporal multiple instance learning algorithm to obtain

coarse foreground/background separation within the vol-

ume. We further refine the segmentation mask in the pixel

level using the graph-cut model. Extensive experiments on

benchmark video datasets demonstrate the superior perfor-

mance of the proposed video segmentation algorithm.

1. Introduction

Video segmentation aims at separating target objects of

interest from noisy background, and has received consider-

able attention with a wide range of computer vision appli-

cations, such as 3D reconstruction [34], video summariza-

tion [11], etc. Numerous algorithms have been proposed

during the past decade with focus on developing graphical

models, e.g., Markov Random Field (MRF), and Condition-

al Random Field (CRF), to estimate target motions for each

pixel (optical flow) [6, 30, 5] or superpixel [22, 41]. De-

spite their favorable performance in several datasets, video

segmentation still faces two main challenges. First, when

graphical models are leveraged to compute temporal consis-

tency in the pixel or superpixel level, there often exist mis-

matching pairs between consecutive frames. For example,

the supervoxel algorithm [15, 44, 38] models the temporal

consistency using superpixels for each frame. The inaccu-

racy caused by the mismatching of superpixels is inevitably

aggregated frame by frame, and finally leads video segmen-

tation algorithms to fail. We also note that developing a

superpixel model across several frames is computational-

ly inefficient. Second, object level motions estimated by

visual tracking algorithms often contain noisy background

as tracking results in the form of bounding boxes are not

tightly around target objects. Video segmentation benefits

little from the recent progress of visual tracking algorithm-

s [24, 28].

To address these challenges, we present a novel frame-

work of applying the multiple instance learning (MIL) al-

gorithm [8] to both spatial and temporal domains for video

segmentation. In contrast to most machine learning algo-

rithms that assign every training instance with a label, MIL

assigns bags of instances with labels. In the binary case, a

bag is labeled positive if at least one instance in that bag is

positive, and the bag is labeled negative if all the instances

in it are negative. MIL is able to classify instances with

missing or noisy labels based on the labeled bags as training

data. This motivates us to apply the MIL algorithm to com-

pute the temporal consistency in the temporal domain. For

example, temporal adjacent and similar superpixels always

belongs to the same label (i.e, foreground or background), s-

ince motion between consecutive frames can not be too sig-

nificant. On the other hand, object level motions estimated

by visual tracking algorithms in the form of bounding boxes

provide rich information for the video segmentation task de-

spite partial noisy background inside bounding boxes. Built

on state-of-the-art tracking algorithms, we properly enlarge

the tracked bounding boxes to meet the requirement of ap-

plying MIL as in [42]. We find that MIL deals with the

noisy background well and provides an accurate envelop of

the true foreground object masks. This significantly facili-

tates video segmentation.

Similar to [42], we use superpixels [1] as instances for

learning the spatio-temporal MIL algorithm. Since MIL of-

ten benefits from more discriminative features, we propose

a multi-scale CNN feature based descriptor to strengthen

the discriminative power of each superpixel. To obtain

better segmentation in the temporal domain, we use the

tracking results from the state-of-the-art tracker [24, 28]

to construct positive and negative bags of superpixels. To

make full use of temporal consistency, we take the spatio-

temporal consistency into consideration and use the super-

pixels over a short temporal span to construct bags. To

initialize the labels of bags, we use a superpixel cluster-

ing paradigm by grouping superpixels with similar features.

In addition, once we have the spatio-temporal segmentation
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Figure 1. Overview of the proposed model. For segmentation, we first adopt state-of-art tracking method to generate self-adapting size

bounding boxes to transfer segmentation task into weakly-supervised problem. We them build a spatio-temporal MIL model by extending

structural information per image to several frames. Upon obtaining this coarse superpixel-level segmentation results, we apply graph-cut

method to refine boundaries on a pixel level.

masks from MIL, we apply the pixel-level graph cut algo-

rithm [20, 31] to refine the segmentation results utilizing

spatio-temporal consistency cue. Therefore we can regard

the proposed method as a multi-granularity framework

for video segmentation problem which can effectively seg-

ment target objects from the background in a coarse to fine

fashion. In the coarsest level (object), off-the-shelf object

tracker is applied to the whole video sequence, yielding a

candidate volume of object bounding boxes. In the middle

level (superpixel), we perform multiple instance learning

within the candidate volume to obtain a coarse segmenta-

tion result. In the finest level (pixel), segmentation mask is

further refined via graph cut like algorithm. We comprehen-

sively evaluate our algorithm on two popular video segmen-

tation datasets, the Segtrack 2.0 [22] and Davis Dataset [32]

released in CVPR 2016. The results demonstrate the supe-

riority of our video segmentation method over the state-of-

the-art algorithms.

Our contributions are three-fold:

1. We propose a novel video segmentation framework

by applying the multiple instance learning in both the

temporal and spatial domains to deal with the issues

of temporal superpixel mismatching and noisy back-

ground within tracked bounding boxes, respectively.

To the best of our knowledge, this is the first attempt

to use MIL for video segmentation.

2. We explore multiple levels of information to segment

target objects from the background in a coarse-to-fine

manner. Tracking results provide object-level candi-

date bounding boxes. Superpixel is the middle level

abstraction of target appearance. We also apply the

graph cut algorithm to refine the segmentation mask in

the pixel level.

3. The proposed algorithm significantly advances state-

of-the-art video segmentation algorithm on public

benchmark datasets with large-scale videos.

2. Related Works

Video Object Segmentation. A large number of meth-

ods have been proposed for resolving the video segmenta-

tion problem. Several works [12, 14] aim at annotating each

pixel in every frame. Others focus on separating one or sev-

eral objects from the background [37, 29, 29, 20, 22, 25,

36].

Existing algorithms [4, 16, 39, 31] widely use graphical

models to merge similar or adjacent superpixels or pixel-

s. Work of Galasso et al. [13] developed a graphic model

based on spectral clustering. Grundmann et al. [15] pro-

posed a greedy agglomerative clustering method. In [46], Yi

et al. used Markov Random Field for unconstrained video

segmentation that depends on tight integration of multiple

cues. Work of Khoreva et al. [19] treated the video seg-

mentation problem by highlighting the importance of clas-

sifiers and features. While Jang et al. [17] used MRF as an

optimization method. These works utilize graphical model-

s to maintain temporal consistency between a few frames

and refine the outline of each segment. Tsai et al. [38]

added a pairwise potential term for applying the graph cut

method. This object-flow paradigm considers two consec-

utive frames at one time, and cannot handle the noisy mis-

matching issues over a long temporal span. It is noticeable

that existing algorithms benefit little from the progress of vi-

sual tracking, that adapts to target appearance changes and

provides tracked bounding boxes with the object informa-
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tion.

Multiple Instance Learning. Multiple Instance Learn-

ing has been proposed with several variances, including D-

D [27], EM-DD [49], since Dietterich et al. [8] primitive-

ly introduced this method in 1997. Since then, MIL has

attracted considerable attention in computer vision. Voila

et al. [47] introduced Mil-boost with purpose of combin-

ing the Adaboost algorithm [35] with the MIL paradig-

m. MIL shows favorable performance on object detection

tasks. Recently, MIL successfully pushed forward online

visual tracking [48, 3], saliency detection [47] and image

retrieval [23]. Most of these works focus on establishing

a robust way of updating an appearance model by training

MIL in one or several frames. In these tasks, MIL demon-

strates the robustness to input instances with ambiguous la-

bels and achieves satisfying performance. Wu et al. [42]

proposed a MILcut method for the task of interactive image

segmentation, where users input a bounding box to initial-

ize the segmentation task. None of these works attempted

to apply MIL to the video segmentation tasks.

In our work, we utilize the MIL method on packs of con-

secutive frames, which obtains better temporal consisten-

cy over time as well as strengthens the classification ability

from instances (superpixels) with noisy labels. Different

from previous works [48, 3], we assign bags of superpix-

els with positive or negative labels using the sweeping line

paradigm and consider the spatio-temporal relationship.

3. Methodology

3.1. Motivation and Overview

To address the challenging video segmentation problem,

we propose a multiple granularity analysis framework to

tackle this problem in a coarse-to-fine manner, as illustrat-

ed in Figure 1. In the coarsest level, we apply off-the-shelf

visual trackers to obtain temporally continuous foreground

object bounding boxes throughout frames, resulting in can-

didate foreground volumes (bounding volume). In the mid-

dle level, a multiple instance learning algorithm is applied

onto the superpixels inside the bounding volume to identi-

fy the set of foreground superpixels (coarse segmentation),

by exploring spatio-temporal consistency. In the finest lev-

el, a graph-cut based algorithm is applied on the pixels of

this coarse segmentation, which yields the final segmenta-

tion result. We will introduce details about these three pro-

cessing components in the following.

3.2. Coarse Granularity Analysis: Bounding Vol
ume Generation

Recently, deep learning based techniques have signif-

icantly improved the performance of visual tracking on

benchmark dataset [43]. Tracking results in the form of

bounding boxes provide rich object information. To se-
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Figure 2. Multi-scale CNN superpixel feature. Superpixels in L1,

generated by SLIC, are merged into larger superpixels by cluster-

ing, which contains richer topological information. Superpixels of

different sizes are then fed into VGG network to predict multiple-

layered CNN features.

quentially obtain an outline of target objects inside bound-

ing boxes, we utilize the recently proposed HCFT track-

er [24] that learns adaptive correlation filters over deep C-

NN features to handle significant appearance changes. We

additionally enhance the HCFT tracker with a scale estima-

tion module to get tighter bounding boxes. To ensure that

tracked bounding boxes provide sufficient and correct infor-

mation for following process, we set up two scaling factor

cp and cn during implementation. Inside each bounding box

in each frame, we can always find target objects regardless

partial noisy background. While outside the bounding box-

es are entirely the background.

3.3. Middle Granularity Analysis: Superpixel Pars
ing

Once the sequence of object bounding boxes (i.e.,

bounding volume) is obtained, we can first decompose

the foreground regions into superpixels and cast the video

segmentation problem as identifying foreground superpix-

el across all frames. Superpixel labeling based approach

has achieved great success recently in image segmentation,

however, directly extending the image based algorithm to-

wards video domain is not feasible. Three issues need to

be addressed. First, as video contains larger variations than

image, it is more challenging to separate foreground super-

pixels from background ones in videos. To this end, we pro-

pose a multi-scale CNN descriptor (feature representation)

for encoding each superpixel for further processing, which

inherits the good property of robustness and discriminating

power from multi-scale analysis and CNN. Second, the ap-

pearance of an object/superpixel is usually consistent across

nearby temporal frames and this temporal consistency prop-

erty should be fully explored to enhance segmentation. We

therefore propose video based MIL algorithm to effectively

recognize foreground superpixels. The two innovations are

explained in detail as follows.
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Multi-scale CNN Superpixel Feature Sizes and num-

bers of grains define the clustering ability of superpixels.

While dense and small superpixels show more sensitivity to

detailed color and texture changes, they may not contain

as much structural information as bigger superpixels do.

Therefore based on this consideration, we build a coarse-to-

fine hieratical model for superpixel feature representation.

More specifically, we first generate small-sized dense su-

perpixels for each frame using SLIC [1] method, and each

superpixel containing 100-150 pixels. Then we extract RG-

B as well as DCNN features for each superpixel. We feed

each frame into VGG-19 net, and upsample the output to

the frame size, then averagely pool pixels to get deep fea-

tures for each superpixel. To build multi-scale superpixel

representation, we start from the finest over-segmentation.

For each superpixel, and we gather its locally connected

and similarly looked neighbors to merge into large super-

pixels. We define the similarity between superpixels by Eu-

clidean distance of feature vectors. Here, the larger super-

pixel could be considered as its irregular context window.

This process is iterated for several times Q. We then con-

catenate the DCNN features extracted from the superpixels

of each level into a feature representation vector by dimen-

sion of 4099 × Q with 3 dimensions RGB and 4096 di-

mensions CNN features. The multi-scale superpixel CNN

feature extraction process is illustrated in Figure 2.

Video-based Multiple Instance Learning Now each

bounding volume could be regarded as a bag of superpix-

els, and the segmentation task can be defined as inferring

the foreground/background label for each superpixel con-

tained in the bounding volume. According to the previous

works in image segmentation, we can cast this label infer-

ring problem as a multiple instance learning problem.

Multiple Instance Learning requires at least one positive

instance in the positive bag and no positive instance in the

negative bag. These requirements can be naturally met by

exploring the tightness of bounding boxes [21]. Suppose

we have a bounding box B for object P in image G, we

define the top, bottom, left and right side of the bounding

box as Ba,Bb,Bc,Bd. If,

(G\B) ∩ P = ∅,

P ∩Ba 6= ∅, P ∩Bb 6= ∅, P ∩Bc 6= ∅, P ∩Bd 6= ∅

we can describe this bounding box as effective and tight:

the bounding box covers the object completely and every

side of the box intersects the outline of the object. By virtue

of such properties, we sample the bounding-box area with

horizontal or vertical rectangular slices with their lengths

or heights equal to that of the bounding boxes, and every

sample contains at least one positive instance while the su-

perpixels outside the bounding box can all be considered

as negative instances. As proved by Wu et al. [42], when

the objects inside are continuous, MIL constraints can be

met on a single image. For video segmentation task, we ex-

tend this method on a pack of several consecutive frames,

i.e. training positive bags and negative bags on this pack of

frames together. Efficient tracking algorithms could export

accurate bounding box with self-adapting scale. These al-

gorithms employ region-proposal or edge-detection method

to approximate bounding boxes to the edge of foreground

object, enforcing bounding boxes to tightly and efficiently

contain complete foreground object and a little background

noises. By this means, we build a spatio-temporal MIL

model, which is robust to errors due to the weak-supervision

nature of MIL. Also, it favors temporal consistency since

it’s applicable on a larger pack of frames than supervoxel.

Topological information within each frame is considered in

our method as well.

The detailed mathematic formulation of the multiple in-

stance learning based video segmentation algorithm (super-

pixel labeling) is presented as follows. For training a MIL

model, suppose we have N bags on a pack of images includ-

ing K consecutive frames, where N =
∑K

k=1 Nk. In ith

bag, feature vector Xi = {xi1, ..., xij , ..., xim} represents

the features of M instances within, yi ⊂ {0, 1} for bag label

and yij for the unknown instance labels. Therefore training

data possess a form of {(X1, y1), ..., (Xn, yn)} which in-

dicates feature vector and unknown label of instances. We

define pi as the possibility that ith bag is positive and pij for

jth instance inside. For conserving the topological informa-

tion in each frame as well as temporal consistency between

frames, we construct our loss function as follows:

L(φ) = Lt(φ) + λLs(φ) (1)

where Lt(φ) indicates temporal term and it stands for the

negative log-likelihood of bags in one pack of frames.

Ls(φ) is spatial term which enforces connectivity con-

strained within single frames. φ indicates weak classifiers,

which will be explained in below.

Definitions for these two terms are as follows:

Lt(φ) = −log
∏

i

p
yi

i (1− pi)
(1−yi) (2)

Ls(φ) =

K
∑

k=1

Nk
∑

i=1

∑

f(α,β)

ραβ‖pαi − pβi‖
2 (3)

In spatial term, f(α, β) refers to the pairs of adjacent in-

stances contained in one bag, and ραβ represents the length

of their common boundary. Under this condition, the neigh-

bouring superpixels tend to share similar labels.

For temporal model Lt(φ), defining φ(xij) as an

instance-level weak classifier, we employ Adaboost frame-

work to combine weak classifiers into a strong one Φxij . θ

as the weight of each weak-classifier and R as number of
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weak classifiers selected, strong classifier can be expressed

as:

Φ(xij) =

R
∑

r=1

θrφr(ij) (4)

After computing the response of each weak classifier,

strong classifier is formed by selecting the classifiers with

greatest discriminative capacity. The possibility of each in-

stance is given by softmax function:

pij =
1

(1 + exp(−yij))
(5)

Using ISR-Boost [18] likelihood ratio, the bag possibil-

ity can be deducted by:

Si =
∑

j⊂i

exp(yij) (6)

pi =
Si

(1 + Si)
(7)

where S is an internal quantity defined in ISR-Boost

method.

Following MIL-boosting method [45], the weight on in-

stance for Eqn. (2) equals the derivative of loss function

with respects to change in yij , and we apply chain rule on

it:

ωt
ij =

∂logLt(φ)

∂yij
=

∂logLt(φ)

∂pi

∂pi

∂pij

∂pij

∂yij
(8)

In our case,

ωij = ωt
ij + ωs

ij =
∂logL(φ)

∂yij

=
∂logLt(φ)

∂yij
+ λ

∂logLs(φ)

∂yij

=
∂logLt(φ)

∂pi

∂pi

∂pij

∂pij

∂yij
+ λ

∂logLs(φ)

∂pij

∂pij

∂yij

(9)

according to ISR-boost,

∂pi

∂pij
= (

1− pi

1− pij
)
2

(10)

and

∂logLs(φ)

∂yij
=

∑

f(α,β)

2ραβ(pαi − pβi) (11)

The remaining parts in Eqn. (9) can be deducted using sim-

ple derivation of Eqn. (5) and (2).

The goal of optimization process is to find the best strong

classifiers that separate foreground superpixels and back-

ground. Each iteration for this optimization contains four

steps: calculating the weight, training weak classifiers with

this weight, minimizing lost function and updating strong

classifiers. The number of total weak classifiers is R′, which

equals to 200 in our case.

3.4. Fine Granularity Analysis: Pixelwise Refine
ment

In the previous section, a spatio-temporal MIL method is

applied on superpixels to address video segmentation prob-

lem. However, as the MIL algorithm is usually based on the

bag defined by the tracked bounding box which is often in-

accurate on object boundaries, the output of the MIL tends

to bias some background superpixels to the label of “fore-

ground”. We therefore require a post-processing step to re-

fine and smooth the outline of the foreground object created

by the MIL segmentation algorithm operated on superpixel

level. To this end, we propose to apply a graph cut style

algorithm for this refinement purpose, which combines the

information provided by pixels and superpixels of the esti-

mated region in order to build a multi-level, coarse-to-fine

refinement model. Note that segmentation results from the

previous step are used to initialize this refinement process.

Following Tsai et al. [38], the mathematic form of the cost

function for the refinement process is defined as:

Etotal = Epixel(µ) + Esp(ν) + Epairwise(µ, ν) (12)

where E denotes energy function for each frame in the

video, which could be further expanded as energy function

for pixel, superpixel and pairwise term. µ and ν represent

pixels and superpixels respectively. In pixel term, we use

GMM model on RGB and SVM on CNN features, while in

superpixel term, RGB feature as well as superpixel cluster-

ing CNN feature are fed in energy function. Epairwise is

the term that considers the compatibility between pixel and

superpixel, which can be expressed as:

Epairwise(µ, ν) =

{

1− |p(µi)− p(νj)| if different labels

0 else

(13)

where we enforce the pixels and superpixels with similar

features to have same labels. For each pixel/superpixel,

we construct its neighbor across three frames, i.e., consid-

er both within frame spatial consistency and between-frame

temporal consistency.

4. Experiments

4.1. Implementation Details

We first use tracking method based on HCF-tracking

[24] and KCFDP-tracking [7] to generate self-adapting

bounding boxes for all frames, and decompose every frame

with SLIC-superpixel algorithm. For an image of 854 ×
480 image, around 3200 superpixels are produced. To gen-

erate bags for MIL method on superpixel-level, we shrink

the box by 5% (cp = 0.05) to sample positive bags and ex-

pand the box by 15% to sample negative ones (cn = 0.15)

, assuring the tightness and effectiveness of the box. To be
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Table 1. Segmentation results (%) on Segtrack v2 dataset. Accu-

racy are presented by overlap ratio. Mean per sequence results

are calculated by average performance of objects appeared in the

same sequence. Mean per objects accuracy is the mean value for

all objects results listed on the table.

Sequence [38] [22] [41] [20] [40] Ours

Online ? X X X X

Girl 87.9 89.2 83.7 87.7 52.4 87.2

Birdfall 57.4 62.5 77.5 49 32.5 55.2

Parachute 94.5 93.4 94.4 96.3 69.9 94.6

Cheetah-Deer 33.8 37.3 63.1 44.5 33.1 45.2

Cheetah-Cheetah 70.4 40.9 35.3 11.7 14 68.9

Monkeydog-M 54.4 71.3 82.2 74.3 22.1 59.7

Monkeydog-D 53.3 18.9 21.1 4.9 10.2 59.2

Penguin-1 93.9 51.5 92.7 12.6 20.8 92.3

Penguin-2 87.1 76.5 91.8 11.3 20.8 88.2

Penguin-3 89.3 75.2 91.9 11.3 10.3 91

Penguin-4 88.6 57.8 90.3 7.7 13 85.2

Penguin-5 80.9 66.7 76.3 4.2 18.9 82.6

Penguin-6 85.6 50.2 88.7 8.5 32.3 87.8

Drifting-1 84.3 74.8 67.3 63.7 43.5 85.6

Drifting-2 39 60.6 63.7 30.1 11.6 38.5

Hummingbird-1 69 54.4 58.3 46.3 28.8 70.3

Hummingbird-2 72.9 72.3 50.7 74 45.9 73.3

BMX-Person 88 85.4 88.9 87.4 27.9 93.7

BMX-Bike 7 24.9 5.7 38.6 6 9.5

Frog 81.4 72.3 61.9 0 45.2 83.8

Worm 89.6 82.8 76.5 84.4 27.4 87.6

Soldier 86.4 83.8 81.1 66.6 43 85.5

Monkey 88.6 84.8 86 79 61.7 90.2

Bird of Paradise 95.2 94 93 92.2 44.3 96.3

Mean /Object 74.1 65.9 71.8 45.3 30.7 75.5

Mean /Sequence 76.4 71.4 72.7 58.1 37.7 77.6

noted, negative bags are sampled near the expanded bound-

ing box so as to represent well near-object background. We

set number of weak classifiers r = 15 out of R′ = 200
classifiers, and λ = 0.05, and generalized mean is used as

the softmax model with exponent set to 1.5. When bound-

ing boxes take the size larger than 2/3 of whole image, we

directly cast whole image as positive bags.

For multi-scale CNN feature extractor, we extract the

3th, 6th, 10th, 14th and 18th layers of VGG network and

do two iterations of superpixels-clustering. On pixel level,

we feed each frame into VGG-19 and then upsample the

output to frame size to obtain CNN features at each pixel

position. Moreover, the weight for CNN and color feature

for pixels and superpixels are respectively 3, 1, 5, 1, while

general weight for pixels and superpixels are 1 and 15 to

leverage their difference in numbers. All these parameters

are fixed during the experiments for all datasets.

4.2. Results and Discussion

We conduct experiments on two popular datasets.

Table 2. Segmentation results (%) on Davis dataset. Accuracy p-

resented by overlap ratio. * stands for incomplete video name.

Sequence [2] [10] [26] [33] [31] [9] Ours

bear 93.7 92.9 95.5 90.6 89.8 90.7 92.9

blackswan 87.1 93 94.3 90.8 73.2 87.5 94.7

bmx-bumps 49 33.6 43.4 30 24.1 63.5 52.8

bmx-trees 47.3 22.9 38.2 24.8 18 21.2 64.2

boat 61.9 70.5 64.4 61.3 36.1 0.7 63.1

breakdance 71.3 47.8 50 56.7 46.7 67.3 59.4

breakdance-fla* 73.3 43 72.7 72.3 61.6 80.4 73.1

bus 74.9 66.8 86.3 83.2 82.5 62.9 87.5

camel 79.5 64 66.9 73.4 56.2 76.8 69.6

car-roundabout 78.6 72.6 85.1 71.7 80.8 50.9 88.8

car-shadow 70.1 64.5 57.8 72.3 69.8 64.5 82.4

car-turn 86.5 83.4 84.4 72.4 85.1 83.3 86.6

cows 81.1 75.6 89.5 81.2 79.1 88.3 82.2

dance-jump 47 49 74.5 52.2 59.8 71.8 75.2

dance-twirl 64.4 44.4 49.2 47.1 45.3 34.7 54.3

dog 62.1 67.3 72.3 77.4 70.8 80.9 64.9

dog-agility 66.3 69.9 34.5 45.3 28 65.2 70.3

drift-chicane 80.6 24.3 3.3 45.7 66.7 32.4 62.3

drift-straight 75.3 61.8 40.2 66.8 68.3 47.3 55.8

drift-turn 85.6 71.7 29.9 60.6 53.3 15.4 68.3

elephant 68.6 75 85 65.5 82.4 51.8 87.8

flamingo 85 53 88.1 71.7 81.7 53.9 83.6

goat 64.1 73.1 66.1 67.7 55.4 1 58.4

hike 90 66.4 75.5 87.4 88.9 91.8 93.2

hockey 77.5 67.7 82.9 64.7 46.7 81 62.2

horsejump-hi* 64.9 58.6 80.1 67.6 57.8 83.4 86.5

horsejump-lo* 54.5 66.3 60.1 60.7 52.6 65.1 79.8

kite-surf 65.4 50 42.5 57.7 27.2 45.3 59.4

kite-walk 73.6 50.9 87 68.2 64.9 81.3 86.4

libby 65.5 29.5 77.6 31.6 50.7 63.5 85.2

lucia 82 83.6 90.1 80.1 64.4 87.6 82.1

mallard-fly 79.9 53.6 60.6 54.1 60.1 61.7 65.2

mallard-water 75.5 75.1 90.7 68.7 8.7 76.1 91.6

motocross-bu* 82.7 76.1 40.1 30.6 61.7 61.4 69.9

motocross-jum* 76 58.3 34.1 51.1 60.2 25.1 64.4

motorbike 68.8 50.6 56.3 71.3 55.9 71.4 82.8

paragliding 87.7 95.1 87.5 86.6 72.5 88 95.4

paragliding-lau* 59.9 58.9 64 57.1 50.6 62.8 62.6

parkour 81.5 34.2 75.6 32.2 45.8 90.1 77.1

rhino 86.4 71.6 78.2 79.4 77.6 68.2 89.4

rollerblade 55.4 72.6 58.8 45 31.8 81.4 89.7

scooter-black 70.4 62.6 33.7 50.4 52.2 16.2 72.5

scooter-gray 65.3 12.3 50.8 48.3 32.5 58.7 71.3

soapbox 68 75.8 78.9 44.9 41 63.4 65.3

soccerball 85.6 9.7 84.4 82 84.3 82.9 92.3

stroller 60 65.6 76.7 59.7 58 84.9 30

surf 94.4 94.1 49.2 84.3 47.5 77.5 92.6

swing 70.9 11.5 78.4 64.8 43.1 85.1 82.1

tennis 71.4 76.5 73.7 62.3 38.8 87.1 58.9

train 53.5 87.3 87.2 84.1 83.1 72.9 91.6

Mean 72.4 60.7 66.5 63.1 57.5 64.1 75.2

Segtrack v2 Dataset. We evaluate our algorithm on the

Segtrack v2 Dataset [22]. This dataset contains 14 videos
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#2 #5 #8 #23

#2 #16 #33 #49

#2 #21 #35 #79

#2 #20 #32 #68

#2 #10 #23 #44

Figure 3. Demonstration results for our segmentation methods on Davis Dataset. The output mask contour is labeled in red color. Our

method is capable of segmenting foreground objects under difficult situation such as deformation, motion blur, appearance change, and

occlusions. Detailed information is also well preserved such as girl’s hair in the third row and swan’s tail. Better viewed in color.

Table 3. Detailed analysis for example sequences from Davis and

Segtrack v2 dataset. Tracking precision is calculated by bounding-

box overlap. MIL refers to segmentation masks computed after

superpixel-MIL process without refinement. Pixel-level precision

refers to final segmentation results.

Methods Tracking (%) MIL Pixel-level

Girl 92.5% 70.1% 87.2%

Parachute 77.5% 74.2% 94.6%

Monkeydog(M) 69.0% 30% 59.7%

Blackswan 95.2% 73.2% 94.7%

Hike 96.3% 77.9% 93.2%

Stroller 27.6% 17.2% 30.0%

with 24 objects and 947 annotated frames. It includes vari-

ous challenging videos with occlusion, motion blur, appear-

ance change and deformation. Some of the videos contains

multiple objects with interactions, which can be segmented

in turn. Here, we present our results in Table 1.

Table 1 illustrates the mean accuracy and accuracy per

object/sequence for the proposed algorithm as well as other

state-of-art methods [38, 41, 20, 15, 40, 22]. The top pre-

forming methods are shown in bold letter. The accuracy is

represented by the overlap (IoU) of the predicted model and

ground truth mask.

As shown in Table 1, the proposed algorithm outper-

forms existing methods on this dataset, especially for fast-

moving, non-rigid objects with complex deformation, such

as BMX-Person, Monkey, Frog, Hummingbird. Notwith-

standing that these videos contain large deformations

or clustered background changes, the proposed method

achieves excellent performances. The online superpixel-

tracking methods [38, 41, 15] do not perform well on these

videos since even one misclassification will be propagated

throughout the entire video to lower accuracy. However,

in the proposed algorithm, we use MIL method to enhance

robustness, which has been proven effective. Meanwhile,

some methods [40, 15] does not consider pixel-level infor-

mation. Their results are, thus, inaccurate on object bound-

aries. In the proposed algorithm, boundaries are refined by

our multi-granularity system.

For videos with large appearance change, such as Bird of
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Paradise, and parachute, the proposed algorithm achieves

favorable results against existing methods [38, 40, 15]. Typ-

ically these methods aggregate superpixels from the whole

image or consider temporal consistency within only two

frames. The proposed method allows computing granularity

inside the rough bounding box throughout several concus-

sive frames to conduct MIL algorithm, thus temporal ap-

pearance change could be foreseen. Our method also favors

video sequences where foreground and background are sim-

ilar, for example Penguin, Frog, since temporal consistency

is enhanced in multi-level.

Davis Dataset. Densely Annotated Video Segmentation

Dataset was newly proposed in by Perazzi et al. [32] in

CVPR 2016. It consists of 50 sequences with 3455 annotat-

ed frames, captured at 24fps and 1080p as well as 480p spa-

cial resolution. All major challenges for video segmentation

task could be found in this dataset, including background

clutter, deformation, motion blur, scale-variation, camer-

a shake, appearance change, etc. For each video frame,

they provide a pixel-accurate, manually created segmenta-

tion ground truth in form of binary mask. Results of more

than ten video segmentation algorithms are presented and

compared.

Similar with Segtrack dataset, results are evaluated by

Intersection-over-Union (IoU) for every frame. Table 2 list-

s accuracy for purposed algorithm and 6 existing method-

s. Overall, our algorithm achieves better results against

other state-of-art methods. As seen in the table, the pro-

posed method excels at treating challenging videos with

complex appearance change (swing, scooter-black,scooter-

gray, rollerblade), occlusions (dog, bus), motion blur (dog,

breakdance-flare), etc. Figure 3 lists several examples of

our segmentation results on this dataset.

In order to further analyse our multi-granularity model,

we list in Table 3 tracking-generated bounding-box accu-

racy, MIL-superpixel level accuracy as well as final pixel-

level accuracy for several sequences in Segtrack v2 and

Davis dataset. Various conclusions can be drawn from this

table. First, tracking accuracy greatly influences segmen-

tation accuracy. Even though we expand bound boxes to

sample negative bags and shrink them to sample positive

ones, inaccurate bounding boxes could lead to large mis-

classification, leaving pixels around boundaries difficult to

compensate mistakes. For sequence Drift-straight,Stroller,

self-adapting bounding boxes fail to expand as much as

foreground object, so the accuracy for this video falls re-

spectively to 55.8% and 30%. However, using other track-

ing methods that favor great scale-variation could improve

accuracy for this kind of video. Ideally speaking, when

bounding boxes converge to tightly surrounding segmen-

tation ground truth mask and MIL conditions are perfect-

ly satisfied, the accuracy for same video is 91.2% and

88.3%, which, to some extent, proves the effectiveness of

Figure 4. Demonstration results for our segmentation methods on

Davis (top) and Segtrack (bottom) dataset. The first column is

the original video frame. The second is the results of superpixel-

parsing. Last column represents final refined results.

the proposed method and its promising performance with

better tracking methods. Second, as shown in the table, our

multi-granularity method can refine segmentation effective-

ly. Even though in the proposed method, both spatial and

temporal information are considered in MIL process, super-

pixels could still lack precision on borders, especially when

foreground objects are not connected or have holes with-

in. As on the table, pixel-level information help improve

accuracy for listed videos by 20%. A vivid illustration is

presented by Figure 4.

5. Conclusion

In this paper, we introduce a Multi-Granularity Analysis

framework for video segmentation in a coarse-to-fine man-

ner and prove that the segmentation problem can be easi-

ly solved. We apply the multiple instance learning in both

the temporal and spatial domains to deal with the issues of

temporal superpixel mismatch and noisy background with-

in tracked bounding boxes, respectively. We show that our

method performs favorably against state-of-art methods on

popular datasets.
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