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Abstract

Image-based precision medicine techniques can be used

to better treat cancer patients. However, the gigapixel res-

olution of Whole Slide Histopathological Images (WSIs)

makes traditional survival models computationally impos-

sible. These models usually adopt manually labeled dis-

criminative patches from region of interests (ROIs) and are

unable to directly learn discriminative patches from WSIs.

We argue that only a small set of patches cannot fully repre-

sent the patients’ survival status due to the heterogeneity of

tumor. Another challenge is that survival prediction usually

comes with insufficient training patient samples. In this pa-

per, we propose an effective Whole Slide Histopathological

Images Survival Analysis framework (WSISA) to overcome

above challenges. To exploit survival-discriminative pat-

terns from WSIs, we first extract hundreds of patches from

each WSI by adaptive sampling and then group these im-

ages into different clusters. Then we propose to train an ag-

gregation model to make patient-level predictions based on

cluster-level Deep Convolutional Survival (DeepConvSurv)

prediction results. Different from existing state-of-the-arts

image-based survival models which extract features using

some patches from small regions of WSIs, the proposed

framework can efficiently exploit and utilize all discrimina-

tive patterns in WSIs to predict patients’ survival status. To

the best of our knowledge, this has not been shown before.

We apply our method to the survival predictions of glioma

and non-small-cell lung cancer using three datasets. Re-

sults demonstrate the proposed framework can significantly

improve the prediction performance compared with the ex-

isting state-of-the-arts survival methods.

1. Introduction

Recently, image-based precision medicine has become a

very active field in healthcare research. Those image data

include pathological images, CT images, MRIs, etc. cap-
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tured from patients. The long-term goal in this research is

to be able to improve the treatment quality of an individual

based on his or her image data. For instance, how a new

patient will survive in the context of known patients’ image

data. The employment of survival prediction would allow

clinicians to make early decisions on treatments which is

very crucial for patients’ healthcare.

One of the most challenging problems in image-based

precision medicine research is that a pathological image

is of high resolution (e.g. measuring 1 million by 1 mil-

lion pixels), compared to one regular image from ImageNet

that usually measure less than 1000 pixels by 1000 pix-

els [18]. Currently, many approaches have been proposed to

incorporate with patients’ imaging data for survival analysis

and present more accurate predictions [25, 27, 28, 31, 33].

Due to the computation issue, the existing methods cannot

directly learn discriminative patterns from WSIs and pre-

dict patients’ survival status using hand-crafted features ex-

tracted from manually labeled small discriminative patches.

Apparently, the process to manually select representative

patches is very labor-intensive. Moreover, one patient usu-

ally has multiple WSIs from different parts of the tissue.

Because solid tumors may have a mixture of tissue archi-

tectures and structures, WSIs from the same patient actu-

ally are very heterogeneous. Therefore, only a small set

of patches from manual annotations cannot completely and

properly reflect the patient’s tumor morphology and has

a very high risk of losing survival-discriminative patterns.

Fig.1 presents an example, where both patient 1 and 2 have

stage IV tumor but patient 2 has worse clinical outcome than

patient 1 according to the clinical trial report. It shows that

even in the same tumor stage, patients with different sur-

vival status may have very distinct visual appearances. It

requires a framework that can consider large heterogeneity

patterns from WSIs.

In classifying cancer subtype with WSIs, one pioneering

work [8] was proposed to use a patch-level convolutional

neural network (CNN) and train a decision fusion model as

a two-level model for tumor classification. However, dif-

ferent from tumor classification, survival prediction is more

challenging because the following reasons. First, survival
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Figure 1. Gigapixel Whole Slide Histopathological Images of two

lung cancer patients (best viewed in color). WSIs can present tu-

mor in high resolution details. In this case, patches shown in red

are discriminate since they show typical visual features of lung

tumor. Patches in blue are non-discriminative because they only

contain visual features from lower grade tumors or non-tumor tis-

sue regions. Patient 2 has worse clinical outcome than patient 1.

prediction is a regression problem where the ranking of pa-

tients’ prediction values matters [20]. While in the tumor

classification task, the prediction result of one patient’s cat-

egory is independent from others. Second, the information

provided by different WSIs from one patient should be ag-

gregated in survival analysis. However, in [8] the aggre-

gation among WSIs from the same patient is not solved;

Third, the ground truth label (survival time and censored

status) for survival analysis is only given on patient. WSI-

level and patch-level ground truth label is unknown. This

complicates the survival prediction problem when training

CNN due to data inefficiency.

Recent years, CNNs have seen many successful appli-

cations in computer vision [13, 6]. However, training a

CNN model usually demands large volume of samples. In

medical research area, the number of training samples is

often very small. This makes training a CNN based sur-

vival model very challenging. Zhu et al. [31] proposed a

deep convolutional survival model (DeepConvSurv) model

to partly solve the problem by augmenting image patches.

Multiple patches form ROIs were extracted and assigned

with patients’ labels. However, DeepConvSurv can only

makes patch-wise predictions. Thus, it is needed a novel

method that can make patient-wise prediction from small

sample size datasets.

In this paper, we propose a Whole Slide Histopatho-

logical Images Survival Analysis (WSISA) framework to

predict patients’ clinical outcomes. Instead of extracting

patches only from region of interests (ROIs), we adopt

adaptive sampling strategy to generate numerous candidate

patches from the WSIs by keeping the number of patches

proportional to the WSI’s size. Since not all candidate

patches are survival-discriminative, we cluster the candi-

date patterns by applying K-Means based on their pheno-

type features. To find important patches clusters, we train

several deep convolutional survival (DeepConSurv) mod-

els [31]. Key clusters are then distinguished by selecting

models with good survival prediction performances. Tumor

might have mixed patterns and one kind of distinct pattern

cannot provide satisfactory prediction power. To further im-

prove the performance using cluster-level survival models,

we aggregate the selected clusters by both applying fully-

connected neural network and boosting Cox’s negative log

likelihood.

Different from the state-of-the-arts images-based sur-

vival approaches which need manual annotations, the pro-

posed framework can directly learn multiple patterns from

WSIs and achieve end-to-end analysis. As we have dis-

cussed before, another challenge for survival prediction

is the data inefficiency. For example, the world’s largest

datasets on lung cancer only contain less than 500 patients

records, deep survival methods on such small scale dataset

may achieve low performance. We demonstrate that the

proposed framework can easily handle this problem. To

evaluate the developed framework, we conduct extensive

experiments on three different datasets and two types of dis-

eases. The main contributions of this paper can be summa-

rized as: 1) To best of our knowledge, we for the first time

develop an end-to-end manner to predict survival on WSIs.

2) The proposed method can solve the small sample dataset

problem on training deep convolutional survival network.

3) Extensive experiments are conducted to evaluate the ef-

fectiveness of the developed framework on two cancer data

using three large dataset. 4) Compare to information de-

rived from molecular profiling to classify tumors and help

to make clinical decisions [19, 30], gigapixel whole slide

histopathological images can better present tumor growth

and morphology with very clear details which can greatly

benefit cancer diagnosis. However, due to computations is-

sues, state-of-the-art survival methods cannot built models

directly from WSIs, and the proposed framework can bridge

this gap to be fully applied in personalized medicine.

2. Background

The goal of survival analysis is to predict the time du-

ration until an event occurs and the event of interest is the

death of a cancer patient in our study. In survival analysis,
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Figure 2. An overview of our WSISA framework (best viewed in color). It consists of four main stages: 1) adaptively generating patches

from the WSIs; 2) clustering patch candidates according to their phenotypes; 3) selecting clusters based on patch-wise survival prediction

performance; 4) aggregating the selected clusters to make final prediction.

the observation of one patient is either a survival time (Oi)

or a censored time (Ci). If and only if ti = min(Oi, Ci)
can be observed during the study, the dataset is right-

censored [17]. An instance in the survival data is usually

represented as (xi, ti, δi) where xi is the feature vector, ti
is the observed time, δi is the indicator which is 1 for a un-

censored instance (death occurs during the study) and 0 for

a censored instance.

The survival function S(t|x) = Pr(O ≥ t|x) is used to

identify the probability of being still alive at time t where

x = (x1, ...xp)
T is the covariates of dimension p, The haz-

ard function is defined as

h(t|x) = lim
△t→0

Pr(t ≤ O ≤ t+△t|O ≥ t;x)

△t
, (1)

which assesses the instantaneous rate of death at time t.
In the modeling methods, Cox proportional hazard model

is among the most popular one. It models the hazards as

h(t|x) = h0(t) exp(β
Tx) where β = (β1, ..., βp)

T is a

vector of regression parameters, and h0(t) is the baseline

hazard. f(x) = βTx is also being called as risk function.

To estimate the parameters β, we can minimize the negative

log partial likelihood, which is

l(β) = −

n
∑

i=1

δi

⎛

⎝βTxi − log
∑

j∈R(ti)

exp(βTxj)

⎞

⎠ . (2)

where R(ti) is the risk set at time ti, which is the set of all

individuals who are still under study before time ti. Clini-

cians and researchers at first applied the Cox model to test

for significant risk factors (e.g. gender, age) affecting sur-

vival. Then they focused on molecular profiling data to

predict more and accurate survival outcomes. In order to

handle with high-dimensional molecular data, feature se-

lection methods have been adapted to Cox regression set-

ting for censored survival data [23, 2, 1, 24, 16, 3]. Be-

sides Cox model, two recent work MTLSA [14] and Deep-

Surv [12] are proposed to model more complex relation-

ships between covariates and survival outcomes. MTLSA

transforms the original survival analysis into a multi-task

learning problem instead of defining the hazard function by

decomposing the regression component into related classi-

fication tasks. However, the number of tasks corresponds to

the maximum follow-up time of all the instances. In fact,

recent cancer datasets (e.g. TCGA) are collecting patient

electronic health records (EHR) with a very long follow-

up time. Therefore, the multi-task learning will encounter

computation issues if the follow-up time is large as it needs

to learn a shared representation across all tasks at different

time intervals. Katzman et al. proposed a deep fully con-

nected network (DeepSurv) to represent the nonlinear risk

function [12]. They demonstrated that DeepSurv outper-

formed the standard linear Cox proportional hazard model

but the architecture of DeepSurv is simple and shallow to

handle complex patients’ imaging data.

As pointed out in [29], tumor microenvironment is a

complex milieu that includes not only the cancer cells but

also the stromal cells and immune cells. All this “extra” ge-

nomic information may muddle results and therefore make

molecular analysis a challenging task for cancer prognosis.

Recent work [25, 27, 28] have attempted to use imaging

data for survival analysis and achieve better predictions for

breast and lung cancer patients. However, as we discussed

before, state-of-the-arts image-based survival predictions

focused on small patches and cannot exploit whole slide

histopathological images (WSIs) directly and efficiently.

3. Methodology

Existing methods for survival analysis are focused on

local information extracted from patches. Few work has

been proposed to process the WSIs. We are for the first

time developing a new effective framework for making sur-

vival prediction from WSIs. We will show that the proposed

framework can catch the general information represented by
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the WSIs.

3.1. The Framework

Fig.2 illustrates the pipeline of the proposed framework.

It consists of four main stages: 1) adaptively generating

patches from the WSIs; 2) clustering patch candidates ac-

cording to their phenotypes; 3) selecting clusters based on

patch-wise survival prediction performance; 4) aggregating

the selected clusters to make final prediction.

3.1.1 Sampling from WSIs

The goal in this stage is to generate candidate patches from

WSIs. Unlike extracting patches only from annotated ROIs,

we argue that the heterogeneous patterns and their propor-

tions in each WSI also count. We assume that those can-

didate patches randomly sampled from patients WSIs can

catch the main patterns and their proportions. And candi-

date patches from different WSIs of one patient together re-

flect the patient’s survival risk. We set a fixed area sampling

ratio to sample the candidate patches (patch size of 512 by

512, 0.5 microns per pixel), making sure a fixed proportion

of pixels are sampled from each WSI. This step and the as-

sumptions are the basis of following steps.

3.1.2 Clustering on Phenotypes

The candidate patches from the first stage are heteroge-

neous. Some of them may be extracted from tumor sec-

tions, some of others may be generated from normal tissue

section and others may contain both. A simple but effec-

tive way to distinguish them is by clustering based on their

phenotypes. Due to the computation concerns, we generate

much smaller size (50× 50) thumbnail images to represent

their phenotypes. The features are from concatenating row

pixels of the thumbnail images, thus there’re 2,500 dimen-

sions of features. Even that, the features are relatively high

for clustering. We employ PCA to reduce the dimension to

50 prior to the K-means clustering process. This step will

cluster different patches into several distinguished pheno-

type groups.

3.1.3 Selecting Clusters

As pointed above, different candidate clusters contain dis-

tinguished pattern patches. Those patches may have vari-

ous prediction power on patients’ survival. To distinguish

their predicting power and select the candidate clusters, we

train separate deep convolutional survival model (DeepCon-

vSurv) on each cluster. The DeepConvSurv models are

trained patch-wise. That is, we assign each patch with the

survival label from that patient. Then we train the model

with all the patches in the cluster. We select the clusters with

predicting accuracy a little bit better than random guess as

Table 1. The architecture of DeepConvSurv

Layer Filter size, stride, number

Conv (ReLU) 7× 7, 3, 32

Max-pooling 2× 2

Conv (ReLU) 5× 5, 2, 32

Conv (ReLU) 3× 3, 2, 32

Max-pooling 2× 2

FC 32

the base learners in the aggregation step. The architecture of

DeepConvSurv is shown in Table 1. The difference between

DeepConvSurv and traditional deep models in classification

or regression relies at the loss function. The loss function

of DeepConvSurv is replaced with Cox model’s loss func-

tion (2). The corresponding models of the selected clusters

become features generator in the aggregation stage.

3.1.4 Aggregation

Aggregation is the key stage of the framework that outputs

patient-wise survival prediction values. This stage can be

further divided into two main sub-steps: Generate weighted

features and Aggregation.

Generating Weighted Features This substep distin-

guishes our framework with traditional patch-based survival

prediction methods to a large extent. We take the pro-

portions of various heterogeneous patterns into considera-

tion. And we solve the problem of various numbers and

sizes of WSIs among different patients by unifying the con-

tributions from those WSIs. Here, we show how various

patches’ contributions from one patient are unified. From

the first stage, patches are extracted based on a fixed area

sampling ratio. When keep the patch size fixed, the number

of patches extracted are proportional to the WSI’s size for

one WSI. The patient’s total number of patches is the sum

of all the patches extracted from his/her WSIs. To estimate

the weight of separate pattern, we need to count the number

of patches in each cluster. Suppose there’re total ni patches

extracted from patient i. For each selected cluster, the pa-

tient has nij patches in cluster j. Then the contribution of

cluster j to the patients survival prediction can be calculated

as:

wij =
nij

ni

, i ∈ {1, ..., N}, j ∈ {1, ..., J}, (3)

where N is the number of patients, J is the number of se-

lected clusters and wij is the weight for cluster j in patient i.
Since each patient may have different numbers of patches in

a selected cluster, the features for that patient in the selected
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cluster are calculated as

xij = wij

k=K
∑

k=1

xijk/K, (4)

where xij is the output features in cluster j for patient i. It

can be either the prediction risks from each cluster or the

output of FC layer in the DeepConvSurv. K is the number

of patches for patient i in cluster j. By randomly sampling

and setting a large enough sampling ratio, the weights for

survival correlated patches can be estimated well for a pa-

tient.

Aggregation After generating patient-wise weighted fea-

tures, the last step is aggregating those features to make a fi-

nal survival prediction. As pointed above, separate patches

lack ability of representing patients’ holistic information.

It is needed to integrate them to better predict patients’

survival. In this problem, from extensive experiments on

three different cancer datasets, the simple Cox model with

Lasso [23] can predict survivals very well based on the

weighted features. The reasons are: 1) because the sam-

ple size is relatively small, simple model will not easily be

overfitted; 2) if the features are highly related to the sur-

vival labels, simple model will work well. In WSISA, the

prediction model can also be easily changed to other state-

of-the-arts models, such as random survival forests [9]. The

algorithm for WSISA is shown in algorithm 1. It shows the

general procedure of WSISA and will not include the details

like splitting the training, validation and testing sets.

3.2. Solving the Small Sample Data Problem

The proposed WSISA solves the problem of small sam-

ple data in survival prediction with WSIs by splitting the

task into two parts: the estimation of patch-wise risks and

the aggregation of patch-wise risks into patients’ risks. In

training the separate patch-wise DeepConvSurv models, we

have relatively large samples. The input of DeepConvSurv

is 512 × 512 × 3. After getting the features from selected

clusters, the aggregation task becomes simple. Thus the

small sample data problem in this task is solved appropri-

ately.

4. Experiments

In this section, we will first describe the datasets used in

our experiments and then demonstrate the performances of

different methods.

4.1. Dataset Description

We focus on lung and brain cancer in our study and

used three public cancer survival datasets with high reso-

lution whole slide pathological images, The National Lung

Screening Trial (NLST) [21] and The Cancer Genome Atlas

Algorithm 1 WSISA Algorithm

Input: WSIs, time t, status δ, sample ratio r and patch size

p

1: /*The 1st stage: Sampling patches*/

2: for all WSIs do

3: num patches = WSIsize×r
p

4: end for

5: /*The 2nd stage: Clustering*/

6: for all patches in training set do

7: features = createThumbnail( patches, size )

8: pca = PCA( train features )

9: clusters = kMeans( pca , numclusters)

10: end for

11: /*The 3rd stage: Selecting clusters*/

12: for all c in clusters do

13: model = trainDeepConvSurv(c features, t, δ)

14: valid accuracy = evaluate(valid c features)

15: end for

16: selected clusters = selectCluster(valid accuracy)

17: /*The 4th stage: Aggregating*/

18: patient features = weightedFeatures(sc features)

19: aggre model = trainAggre(patient features, t,δ)

Output: The patients’ risk

Table 2. The numbers of WSIs, patients, patches originally ex-

tracted and filtered in each dataset. Because some patches are ex-

tracted from background parts ( they are mostly white ) in WSIs,

we filter out the valid patches which are non-white.

Dataset NLST TCGA-LUSC TCGA-GBM

#patients 404 121 126

#WSIs 1104 485 255

#patches 67834 70738 60623

#valid patches 41303 24387 27551

(TCGA). TCGA project [11] can provide large-scale molec-

ular profiling data and pathological images for each patient.

NLST is a very large lung cancer dataset collected by the

National Cancer Institute’s Division of Cancer Prevention

(DCP) and Division of Cancer Treatment and Diagnosis

(DCTD).

We conducted experiments on two cancer subtypes of

brain and lung cancer in TCGA: glioblastoma multiforme

(GBM) and lung squamous cell carcinoma (LUSC). We

adopted a core sample set from UT MD Anderson Can-

cer Center [30] in which each sample has information for

the overall survival time, pathological images and molecu-

lar data related to gene expression. The numbers of WSIs

and patients in each dataset are shown in Table.2.
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4.2. Comparison methods and Evaluation Metric

To analyze pathological images in comparison survival

models, we have annotations that locate the tumor regions

in whole slide images (WSIs) with the help of pathologists.

We calculated hand-crafted features using CellProfiler [4]

which serves as a state-of-the-art medical image feature ex-

tracting and quantitative analysis tool. Motivated by recent

work [28, 32], a total of 1,795 quantitative features were

calculated from each image tile. These types of image fea-

tures include cell shape, size, texture of the cells and nuclei,

as well as the distribution of pixel intensity in the cells and

nuclei.

We compare our framework with seven popular state-of-

the-art survival models . They are classified into five cate-

gories:

• Regularized Cox models: The Cox proportional haz-

ards model [5] is the most commonly used semi-

parametric model in survival analysis. The l1-norm

(LASSO-Cox) [23] and elastic-net penalized Cox (EN-

Cox) models [26] are used in this paper.

• Parametric censored regression models: This type

of survival models formulates the joint probability of

the uncensored and censored instances as a product

of death density function and survival functions, re-

spectively. The likelihood function can be defined by

combining these two components [10]. We choose

Weibull, Logistic distribution to approximate the sur-

vival data.

• Random survival forests: Random survival forests

(RSF) improves the survival prediction performance

by ensembling base learning trees [9].

• Boosting concordance index (BoostCI): It is an ap-

proach where the concordance index metric is modi-

fied to an equivalent smoothed criterion using the sig-

moid function [15].

• Multi-task learning models: We compared our

method with recent ”Multi-Task Learning model for

Survival Analysis” (MTLSA) [14] which reformulates

the survival model into a multi-task learning problem.

WSISA is the proposed framework that can make sur-

vival prediction from patients’ all WSIs. Since the choices

of survival models in aggregation stage are multiple, we try

all the above state-of-the-art methods to fully compare our

framework with the traditional ways.

To evaluate the performances in survival prediction, we

take the concordance index (C-index) as our evaluation met-

ric [7]. The C-index quantifies the ranking quality of rank-

ings and is calculated as follows:

c =
1

n

∑

i∈{1...N |δi=1}

∑

sj>si

I[Xiβ̂ > Xj β̂] (5)

where n is the number of comparable pairs, I[.] is the indi-

cator function and s. is the actual observation. The value of

C-index ranges from 0 to 1. The larger CI value means the

better prediction performance of the model and vice versa.

0 is the worst condition, 1 is the best and 0.5 is the value as

a random guess.

4.3. Implementation details

The source codes of MTLSA are downloaded from the

authors’ website1. All other methods in our comparisons

were implemented in R. LASSO-Cox and EN-Cox are built

using the cocktail function from the fastcox package [26].

RSF is from the randomForestSRC package [9]. The im-

plementation of BoostCI can be found in the supplementary

materials of [15]. The parametric censored regression mod-

els are from the survival package [22].

We set 80% of the patients as training set and the left

20% as testing set. From the training set, we split 25% of

them as the validation set. All the sets are split stratified by

the ratio of censored data.

4.4. Results and Discussions

4.4.1 Sampling Patches

We extract patches of size 512 × 512 from WSIs. To cap-

ture detailed information of the images, those patches are

extracted from 20X (0.5 microns per pixel) objective mag-

nifications. This step generates numerous heterogeneous

patches from one patient. Among them some are survival

related and some are not. Even some of them are the back-

ground patches (mostly white). Table 2 gives the statistics

on the extracted patches from three datasets. In TCGA-

LUSC and TCGA-GBM datasets, over 54% of the orig-

inal patches are background patches. In NLST dataset,

there’re about 38% are background patches. The back-

ground patches are easily filtered out according to the vari-

ance of pixel values.

4.4.2 Clustering and Selecting Clusters

During the experiments, we cluster patches into 10 groups

in each dataset. Part of the clustering results can be found

in Fig. 3. From Fig. 3, we can see the heterogeneity among

each cluster. Their patterns are different. For the cluster

selection, we set the threshold of patch-wise prediction C-

index as 0.5. That is if the model predicts better than ran-

dom guess, it is selected. The patches surrounded by red

1https://github.com/yanlirock/MTLSA
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(a) NLST (b) TCGA-LUSC (c) TCGA-GBM

Figure 3. Some sample patches in different clusters from three datasets. Patches in each dataset are from the same patient. Sample patches

from selected clusters are shown in red and patches in blue mean they are from non-survival related clusters.

lines are the effective patterns selected and by the blue lines

are ineffective patterns. The results also show that pheno-

type based cluster method is effective to distinguish survival

related patterns.

4.4.3 Predicting Survival

As pointed out before, the features used to train aggrega-

tion model in WSISA can either be the output risk from

each DeepConvSurv or the FC layer (the layer before out-

put layer) values in each DeepConvSurv. In this paper, we

choose FC layer values for NLST and output risks for both

TCGA-LUSC and TCGA-GBM. It is based on the sample

sizes of the datasets. There are two benefits to aggregate

the risks: 1) if the sample sizes in datasets with histopatho-

logical images are much smaller, high dimension features

with small training sample will not fit a good prediction

model. The dimension of output risks equals to the number

of selected clusters, which is much smaller than the training

data size; 2) the output weighted risks of one cluster can

partly estimate the patients’ survival. Thus it can be used

as features in aggregation stage due to the high level sur-

vival information it may contain. However, due to NLST

has relatively larger number of samples compared to TCGA

datasets, we feed the features from FC layer to train the ag-

gregation model.

Table 3 presents the C-index values by various survival

regression methods on three datasets. The C-index value

serves as a standard evaluation metric in survival analy-

sis [20]. It shows the prediction power of different sur-

vival models. From Table 3, two groups of experiments

are conducted on two different types of features (ROI-based

features and WSISA holistic features). In ROI-based ex-

periments, the patients’ features are extracted from ROI

patches. If one patient has more than one ROI in his/her

WSIs, we sample one patch from each ROI and then av-

erage the features extracted from them. The dimension of

those features is 1,795. WSISA provides a way to repre-

sent the holistic information of one patient. The features in

WSISA are concatenated from selected clusters by weight-

ing them first.

From Table 3, the best performance is achieved by

WSISA based methods in each dataset. For NLST and

TCGA-LUSC datasets, the best results are achieved by sim-

ple Cox based models. The improvement in NLST by

WSISA can even be over 15% compared to the best perfor-

mance achieved by ROI-based methods. The reason why

simple Cox based models work is due to the good repre-

sentative ability of features from WSISA. ROI based mod-

els perform generally not well due to three reasons: 1) the

limitation of local information provided by the patches ex-

tracted from the ROI; 2) the non-effective way to learn the

heterogeneous features from the patches; and 3) the small

sample available to train the model.

The results also show only the patches from ROIs can not

provide enough information for survival prediction. And

the proposed WSISA is good at estimating the patient’s sur-

vival with the information provided by WSIs not just from

ROIs. Thus WSISA is good at finding the survival related

patterns and making a better prediction on patient’s sur-

vival from small sample datasets. What’s more, it does not

need the annotations on histopathological images, which

will make it more practical in real applications.

4.4.4 Discussion

From the extensive experiments on three datasets, the

patches selected by WSISA are discriminative and the ag-

gregation results on predicting patients’ survival are better.

Thus the main contribution of this paper are as follows:
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Table 3. Performance comparison of the proposed methods and other existing related methods using C-index values on three datasets. The

larger C-index value is better. The results highlighted with red bold show the best performance in those datasets. The results highlighted

with black bold indicate the features that can generate better C-index values with specific methods.

Methods
NLST TCGA-LUSC TCGA-GBM

ROI-based WSISA ROI-based WSISA ROI-based WSISA

LASSO-Cox [23] 0.503 0.703 0.540 0.638 0.440 0.600

En-Cox [26] 0.502 0.703 0.613 0.638 0.440 0.603

Cox-Log [10] 0.466 0.440 0.548 0.397 0.504 0.645

Cox-Weibull [10] 0.480 0.295 0.491 0.388 0.384 0.400

RSF [9] 0.485 0.595 0.347 0.578 0.560 0.518

BoostCI [15] 0.511 0.610 0.339 0.273 0.507 0.510

MTLSA [14] 0.609 0.680 0.536 0.603 0.571 0.510

• WSISA is for the first time being developed to make

survival prediction based on whole slide histopatho-

logical images. What’s more, it is annotation free,

which will make it close to the real applications.

• We solve the problem of training deep survival models

on small sample datasets as a by-product in WSISA.

The framework provides large number of training sam-

ples by clustering numerous candidate patches from

patients’ whole slides.

• The developed WSISA can catch the holistic informa-

tion of one patient regardless of the number and size of

whole slide histopathological images the patient pro-

vides. This distinguishes to all the ROI based methods

and make the performance of WSISA improve a lot.

• Extensive experiments on three datasets and two types

of cancers are conducted to make our conclusion more

concrete.

However, there are still some open problems needed to

be solved in our future work. To make WSISA work well, it

is needed to extract hundreds to thousands patches from one

patient, which will definitely take much disk space. Thus it

is valuable to explore a way to reduce the disk space con-

sumption. The selected clusters may contain certain pheno-

types that related to specific disease. The discovery of those

phenotypes will be significantly meaningful.

5. Conclusion

We presented a whole slide histopathological images-

based survival analysis framework (WSISA) which can

directly learn discriminative and survival-related patterns

from patients’ gigapixel images. Compared to existing

patch-based survival models, the developed framework can

handle various numbers and sizes whole slide histopatho-

logical images among different patients. It can learn holistic

information of the patient and achieve much better perfor-

mance compared to the ROI patch based methods. The pro-

posed framework can also be applied to other tasks based on

the whole slide histopathological images like tumor grade

estimation. In the future, we will explore more ways to op-

timize the training process so that it scales up to the large

scale histopathological datasets with other types of cancers.
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