

Hierarchical Boundary-Aware Neural Encoder for Video Captioning

LSTMs for Video Captioning

JNIMORE

JNIVERSITÀ DEGLI STUDI D

MODENA E REGGIO EMILIA

Recurrent networks are a popular choice as video encoders for captioning.

However, they can not optimally deal with long video sequences, especially when they have a layered structure.

The memory of the LSTM mixes representations computed while attending at different actions and appearances.

Boundary-Aware Cell

A video encoding cell capable of identifying discontinuity points and modify the layer connectivity through time.

$$s_t = \tau (\mathbf{v}_s^T \cdot (W_{si}\mathbf{x}_t + W_{sh}\mathbf{h}_{t-1} + \mathbf{b}_s))$$
$$\tau(x) = \begin{cases} 1, & \text{if } \sigma(x) > 0.5\\ 0, & \text{otherwise} \end{cases}$$

During training: stochastic version of the step function in the forward pass, and a differentiable estimator in the backward pass.

Lorenzo Baraldi, Costantino Grana and Rita Cucchiara Dipartimento di Ingegneria "Enzo Ferrari" – Università degli Studi di Modena e Reggio Emilia

(a) Boundary-Aware Video Encoder

(b) Classic LSTM Video Encoder

Boundary detection c_{t-1} $\rightarrow \odot \rightarrow C_t$ STM cell

Connectivity through time

When a boundary is estimated, the hidden state and memory cell are reinitialized, and the previous hidden state is given to the output, as a summary of the detected segment.

```
\mathbf{h}_{t-1} \leftarrow \mathbf{h}_{t-1} \cdot (1-s_t)
\mathbf{c}_{t-1} \leftarrow \mathbf{c}_{t-1} \cdot (1-s_t)
```

The connectivity schema of the layer is thought as an activation rather than as a non-learnable hyperparameter.

Then, a second recurrent layer encodes this variable-length representation into a feature vector for the overall video.

Experimental Results

Performance improvements on movie description datasets over 1- and 2-layers LSTM encoders and when forcing the boundary detector to fire on camera changes or after Model small video Rohrbach chunks.

SMT (bes LSTM en Double-la Boundary Boundar

Analysis of learned boundaries

Video are split in large, very significant chunks, some corresponding to camera changes and others to more soft action or appearance boundaries.

References

- [1] L. Yao, et al. Describing videos by exploiting temporal Structure, CVPR 2015
- [2] S. Venugopalan, et al. Sequence to sequence-video to text, CVPR 2015
- [4] A. Rohrbach, et al. A dataset for movie description, CVPR 2015
- [5] A. Rohrbach, et al. The long-short story of movie description, GCPR 2015

	Model	METEOR	
S -	SA-GoogleNet+3D-CNN [1]	4.1	
	S2VT-RGB(VGG) [2]	6.7	
	HRNE with attention [3]	6.8	
	LSTM encoder (C3D+ResNet)	6.7	
	Double-layer LSTM encoder (C3D+ResNet)	6.7	
	Boundary encoder on shots	7.1	
	Boundary-aware encoder $(C3D+ResNet)$	7.3	
(a) M-VAD dataset			

	CIDEr	B@4	R_L	Μ
st variant) [4]	8.1	0.5	13.2	5.6
n $et al.$ [5]	10.0	0.8	16.0	7.0
ncoder (C3D+ResNet)	10.5	0.7	16.1	6.4
ayer LSTM encoder (C3D+ResNet)	10.6	0.6	16.5	6.7
y encoder on shots	10.3	0.7	16.3	6.6
y-aware encoder $(C3D+ResNet)$	10.8	0.8	16.7	7.0
	(b) MPII-MD dataset			

Also, boundaries help to tackle alignment defects in the groundtruth.

[3] P. Pan, et al. Hierarchical recurrent neural encoder for video representation with application to captioning, CVPR 2016