



Given the input volume corresponding to an object, we use a CNN to predict a shape abstraction parametrized as up to M



## Learning Shape Abstractions by Assembling Volumetric Primitives Shubham Tulsiani<sup>1</sup> Hao Su<sup>2</sup> Leonidas J. Guibas<sup>2</sup> Alexei A. Efros<sup>1</sup> Jitendra Malik<sup>1</sup> <sup>1</sup>University of California, Berkeley

<sup>2</sup>Stanford University



b) Chair back, seat primitives

**Image Based Parsing** 

c) Chair back orientation.



Predictions of an image based CNN trained to mimic the output of the learned volume based CNN.

Acknowledgements: We thank Saurabh Gupta and David Fouhey for insightful discussions. This work was supported in part by Intel/NSF Visual and Experiential Computing award IIS-1539099, NSF Award IIS-1212798, and the Berkeley Fellowship to ST. We gratefully acknowledge NVIDIA corporation for the donation of Tesla



shubhtuls.github.io/volumetricPrimitives/