Accurate Depth and Normal Maps from Occlusion-Aware Focal Stack Symmetry

Michael Strecke, Anna Alperovich, and Bastian Goldluecke

Computer Vision and Image Analysis University of Konstanz

Contributions

- Novel way to handle occlusions when constructing cost volumes based on focal stack symmetry
- Joint regularization of depth and normals for smooth normal maps consistent with depth estimate

Light field structure and focal stacks

Light fields are defined as 4D function $L: \Pi \times \Omega \to \mathbb{R}$ on ray space, where rays are given by intersection points with the focal plane Π and the image plane Ω . Refocusing to disparity α : aperture filter σ over subaperture views $\boldsymbol{v} = (s, t)$,

$$\varphi_{\boldsymbol{p}}(\alpha) = \int_{\Pi} \sigma(\boldsymbol{v}) L(\boldsymbol{p} + \alpha \boldsymbol{v}, \boldsymbol{v}) \, \mathrm{d}\boldsymbol{v}. \tag{1}$$

Lin et al. [6]: in absence of occlusion, the focal stack is symmetric around the ground truth disparity. Assignment cost for disparities measures symmetry,

$$s_{\boldsymbol{p}}^{\varphi}(\alpha) = \int_{0}^{\delta_{\max}} \rho(\varphi_{\boldsymbol{p}}(\alpha - \delta) - \varphi_{\boldsymbol{p}}(\alpha + \delta)) \, \mathrm{d}\delta.$$
⁽²⁾

BR

Joint depth and normal map optimization

Problem: global optimal solution obtained with sublabel relaxation [7] locally flat. **Our approach:** novel prior on normal maps which enforces correct relation to depth as well as smoothness of the normal field:

$$E(\zeta, \boldsymbol{n}) = \min_{\alpha > 0} \int_{\Omega} \rho(\zeta, x) + \lambda \| N\zeta - \alpha \boldsymbol{n} \|_2 \, \mathrm{d}x + R(\boldsymbol{n}) \, \mathrm{d}x \tag{5}$$

where $R(\boldsymbol{n})$ is a regularizer for the normal field given as

$$R(\boldsymbol{n}) = \sup_{\boldsymbol{w} \in \mathcal{C}_c^1(\Omega, \mathbb{R}^{n \times m})} \int_{\Omega} \alpha \|\boldsymbol{w} - D\boldsymbol{n}\| + \gamma g \|D\boldsymbol{w}\|_F \, \mathrm{d}x \tag{6}$$

and reparametrized depth $\zeta := \frac{1}{2}z^2$ is related to normals by a linear operator $N(\zeta)$ [2].

Optimization for depth: Terms not dependent on ζ are removed, resulting in saddle point problem:

$$\min_{\zeta,\alpha>0} \max_{\|\boldsymbol{p}\|_{2} \leq \lambda, |\xi| \leq 1} \left\{ \begin{array}{l} (\boldsymbol{p}, N\zeta - \alpha \boldsymbol{n}) + \\ (\xi, \rho|_{\zeta_{0}} + (\zeta - \zeta_{0})\partial_{\zeta}\rho|_{\zeta_{0}}) \end{array} \right\}.$$
(7)

Solved using the primal-dual algorithm [1].

Optimization for normals: Removing all terms not depending on n: L^1 denoising problem

$$\min_{\|\boldsymbol{n}\|=1} \int_{\Omega} \lambda \|N\zeta\| \|\boldsymbol{w} - \boldsymbol{n}\| \, \mathrm{d}x + R(\boldsymbol{n}).$$

Nonconvex due to ||n|| = 1: adoption of ideas from [10] for solution (local

Occlusion-aware focal stack symmetry

Problem: Focal stack at occlusions not symmetric around true disparity **Our assumption:** occlusions only in one half-plane of view points Then we can prove symmetry in partial focal stacks,

$$\varphi_{\boldsymbol{e},\boldsymbol{p}}^{-}(d+\delta) = \varphi_{\boldsymbol{e},\boldsymbol{p}}^{+}(d-\delta), \quad \text{where} \quad \varphi_{\boldsymbol{e},\boldsymbol{p}}^{-}(\alpha) = \int_{-\infty}^{0} L(\boldsymbol{p} + \alpha s \boldsymbol{e}, s \boldsymbol{e}) \, \mathrm{d}s \qquad (3)$$
$$\varphi_{\boldsymbol{e},\boldsymbol{p}}^{+}(\alpha) = \int_{0}^{\infty} L(\boldsymbol{p} + \alpha s \boldsymbol{e}, s \boldsymbol{e}) \, \mathrm{d}s.$$

Our new disparity cost encourages symmetry for partial horizontal and vertical stacks:

$$s_{\boldsymbol{p}}^{\varphi}(\alpha) = \int_{0}^{\delta_{\max}} \min\left(\rho(\varphi_{(1,0),\boldsymbol{p}}^{-}(\alpha+\delta) - \varphi_{(1,0),\boldsymbol{p}}^{+}(\alpha-\delta))\right),$$
$$\rho(\varphi_{(0,1),\boldsymbol{p}}^{-}(\alpha+\delta) - \varphi_{(0,1),\boldsymbol{p}}^{+}(\alpha-\delta))\right) \, \mathrm{d}\delta.$$

parameterization of tangent space, effective linearization).

Comparison of normal maps for different methods

normal smoothing [10]

(8)

(4)

0.87

Combining cost terms can improve robustness

(a) slice through focal stack φ from [6] otton (b) slice through φ^+ 0.01 (c) slice through φ^-

This work was supported by the ERC Starting Grant "Light Field Imaging and Analysis" (LIA 336978, FP7-2014). Presented at the Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, USA, July 2017.

Accurate Depth and Normal Maps from Occlusion-Aware Focal Stack Symmetry

Universität Konstanz

Michael Strecke, Anna Alperovich, and Bastian Goldluecke

Computer Vision and Image Analysis University of Konstanz

Experiments

References

- [1] A. Chambolle and T. Pock, A first-order primal-dual algorithm for convex problems with applications to imaging.
 J. Math. Imaging Vis., 40(1):120–145, 2011.
- [2] G. Graber, J. Balzer, S. Soatto, and T. Pock, Efficient minimal-surface regularization of perspective depth maps in

variational stereo.

In Proc. International Conference on Computer Vision and Pattern Recognition, 2015.

- [3] K. Honauer, O. Johannsen, D. Kondermann, and
 B. Goldluecke, A dataset and evaluation methodology for depth estimation on 4d light fields.
 In Asian Conf. on Computer Vision, 2016.
- [4] H. Jeon, J. Park, G. Choe, J. Park, Y. Bok, Y. Tai, andI. Kweon, Accurate depth map estimation from a lenslet light field camera.
 - In Proc. International Conference on Computer Vision and Pattern Recognition, 2015.
- [5] O. Johannsen, A. Sulc, and B. Goldluecke, What sparse light field coding reveals about scene structure.

In Proc. International Conference on Computer Vision and Pattern Recognition, 2016.

- [6] H. Lin, C. Chen, S.-B. Kang, and J. Yu, Depth recovery from light field using focal stack symmetry. In *Proc. International Conference on Computer Vision*, 2015.
 [7] T. Moellenhoff, E. Laude, M. Moeller, J. Lellmann, and
- D. Cremers, Sublabel-accurate relaxation of nonconvex

- energies.
 - In Proc. International Conference on Computer Vision and Pattern Recognition, 2016.
- [8] T. Wang, A. Efros, and R. Ramamoorthi, Occlusion-aware depth estimation using light-field cameras.
 In *Proceedings of the IEEE International Conference on Computer Vision*, pages 3487–3495, 2015.
- [9] S. Wanner and B. Goldluecke, Variational light field analysis for disparity estimation and super-resolution.
 IEEE Transactions on Pattern Analysis and Machine Intelligence, 36(3):606–619, 2014.
- [10] B. Zeisl, C. Zach, and M. Pollefeys, Variational regularization and fusion of surface normal maps.
 - In Proc. International Conference on 3D Vision (3DV), 2014.

Real-world results