Simultaneous Visual Data Completion and Denoising Based on Tensor Rank and Total Variation Minimization and Its Primal-Dual Splitting Algorithm T. Yokota and H. Hontani (Nitech)

(染) Nagoya Institute of Technology 科研費

Completed data

Introduction (data completion)

Completion is a procedure to recover missing values by using

Observed

incomplete data

 Ω

- Available parts of data
- Structural assumption

- **Ex.) Vector completion**
- Linear interpolation
- **Polynomial interpolation**

Ex.) Matrix completion

- Low-rank matrix completion
- **Bilinear interpolation**

Ex.) Tensor completion

- Low-rank tensor completion
- **Trilinear interpolation**
- **Tensor decomposition**

-- Concept of completion problem --

Completion

Simultaneous Tensor Completion and Denoising

- > If given incomplete data is with noise, ordinary completion techniques are not so useful (or can not be applied).
- N-th Order tensor: $oldsymbol{\mathcal{X}} \in \mathbb{R}^{I_1 imes I_2 imes \cdots imes I_N}$
- $f(\boldsymbol{\mathcal{X}}): \mathbb{R}^{I_1 \times I_2 \times \cdots \times I_N} \to \mathbb{R}$ **Function:**

Regularization function (e.g., nuclear-norm, TV-norm, L1-norm etc)

Noise threshold

Proposed Method

Tensor TV normTensor nuclear norm>Primalminimize
$$\alpha f_{\mathrm{TV}}(\mathcal{X}) + \beta f_{\mathrm{LR}}(\mathcal{X}),$$

s.t. $v_{\min} \leq \mathcal{X} \leq v_{\max},$
 $||P_{\Omega}(\mathcal{X}_{\mathrm{observed}} - \mathcal{X})||_{F}^{2} \leq \delta$ u
set step>Tensor TV norm
 $f_{\mathrm{TV}}(\mathcal{X}) := \sum_{i_{1}, i_{2}, \dots, i_{N}} \sqrt{\sum_{n=1}^{N} w_{n}(\nabla_{n} x_{i_{1}, i_{2}, \dots, i_{N}})^{2}}$ set step>Tensor nuclear normDifferential with respect to
n-th axis u

 $f_{\text{LR}}(\boldsymbol{\mathcal{X}}) := \sum_{n=1}^{N} \lambda_n ||\boldsymbol{X}_{(n)}||_*$ $||\cdot||_* : \text{sum of all singular values of matrix}$

Definition of mode matrix unfolding

$$\begin{split} \tilde{\boldsymbol{u}} &\leftarrow \boldsymbol{u}^{k} + \gamma_{2} \tilde{\boldsymbol{x}} \\ \boldsymbol{u}^{k+1} &= \tilde{\boldsymbol{u}} - \gamma_{2} \mathrm{prox}_{i_{\mathcal{D}}} [\tilde{\boldsymbol{u}}/\gamma_{2}] \\ \widetilde{\boldsymbol{Y}} &\leftarrow \boldsymbol{Y}^{k} + \gamma_{2} [\sqrt{w_{1}} \boldsymbol{D}_{1} \tilde{\boldsymbol{x}}, ..., \sqrt{w_{N}} \boldsymbol{D}_{N} \tilde{\boldsymbol{x}}] \\ \boldsymbol{Y}^{k+1} &= \widetilde{\boldsymbol{Y}} - \gamma_{2} \mathrm{prox}_{\frac{\alpha}{\gamma_{2}} || \cdot ||_{2,1}} [\widetilde{\boldsymbol{Y}}/\gamma_{2}] \\ \widetilde{\boldsymbol{Z}}^{(n)} &\leftarrow \boldsymbol{Z}_{(n)}^{(n)k} + \gamma_{2} \widetilde{\boldsymbol{X}}_{(n)} \ (\forall n) \\ \boldsymbol{Z}_{(n)}^{(n)k+1} &= \widetilde{\boldsymbol{Z}}^{(n)} - \gamma_{2} \mathrm{prox}_{\frac{\beta\lambda_{n}}{\gamma_{2}} || \cdot ||_{*}} [\widetilde{\boldsymbol{Z}}^{(n)}/\gamma_{2}] \end{split}$$

Definition of
$$\operatorname{prox}_{\lambda g}[\boldsymbol{z}] := \operatorname*{argmin}_{\boldsymbol{x}} \lambda g(\boldsymbol{x}) + \frac{1}{2} ||\boldsymbol{z} - \boldsymbol{x}||_2^2$$

SPCQV

IEEE 2017 Conference on **Computer Vision and Pattern** Recognition

missing (30%)	original	propo	osed G	TV		SPCQV	SPCTV
		Missing rate	proposed	GTV	LNRTC	SPCQV	SPCTV
	citrus	10%	25.646	25.186	23.852	23.743	23.706
	citrus	30%	23.410	22.920	20.948	22.251	22.115
	citrus	50%	20.919	20.644	18.112	20.459	20.162
	tomato	10%	27.980	27.865	26.231	24.896	24.890
	tomato	30%	27.187	26.782	24.516	24.492	24.460
	tomato	50%	26.014	25.429	22,785	23,825	23.717

	Missing rate	proposed	GTV	LNRTC	SPCQV	SPCTV
	10%	31.045	30.947	28.820	30.018	30.021
	30%	28.942	28.485	26.920	29.642	29.659
	50%	26.750	26.101	25.006	28.995	29.996

Convex optimization based visual data recovery is proposed. Convex approach is fast & efficient, but non-convex approach is more accurate for highly missing cases.