

始爾濱子業大學 HARBIN INSTITUTE OF TECHNOLOG

Motivation

Existing image restoration methods

> Model-based optimization methods

Flexible but time-consuming and less effective

> Discriminative learning methods

• Fast and effective but application-specific

Basic idea

- \succ With the aid of variable splitting techniques such as alternating direction method of multipliers (ADMM) and half quadratic splitting (HQS) algorithms, denoiser prior can be plugged in as a modular part of model-based optimization methods to solve other inverse problems.
- Learning fast and expressive discriminative CNN (convolutional neural network) denoisers.

Half Quadratic Splitting (HQS) Algorithm

The general model for image restoration $\min_{\mathbf{x}} \|\mathbf{y} - \mathbf{H}\mathbf{x}\|_2^2 + \lambda \cdot R(\mathbf{x})$ Introducing an auxiliary variable z ($z \approx x$) $min_{x,z} ||y - Hx||_{2}^{2} + \lambda \cdot R(z) + \eta ||z - x||_{2}^{2}$ Solving x and z alternatively and iteratively (a) $min_x ||y - Hx||_2^2 + \eta ||z - x||_2^2$ % Quadratic regularized least- squares problem

(b) $\min_{\mathbf{z}} \eta \|\mathbf{x} - \mathbf{z}\|_2^2 + \lambda \cdot R(\mathbf{z})$ % Denoising sub-problem

Learning Deep CNN Denoiser Prior for Image Restoration Kai Zhang^{1,2}, Wangmeng Zuo¹, Shuhang Gu², Lei Zhang² School of Computer Science and Technology, Harbin Institute of Technology, China 2 Department of Computing, Hong Kong Polytechnic University, Hong Kong

Network Architecture

Design Rationale and Training Details

- The residual image of Gaussian denoising has a simple Gaussian distribution.
- Batch normalization and residual learning are beneficial to each other [1].
- Using dilated filter to enlarge receptive field.
- > Using training samples with small size to help avoid boundary artifacts.
- > Learning specific denoiser model with small interval noise levels.

Image Denoising

Table: The averaged PSNR(dB) results of different methods on BSD68 dataset.

Methods	BM3D	WNNM [2]	TNRD	Proposed
15	31.07	31.37	31.42	31.73
25	28.57	28.83	28.92	29.23
50	25.62	25.87	25.97	26.23

Image Deblurring

(a) Blurry and noisy image (b) IDDBM3D (26.95dB) is 2).

Image Super-Resolution

(d) VDSR (24.73dB) (b) Zoomed LR image (a) Ground-truth (e) Proposed (29.32dB) Figure: Single image super-resolution performance comparison for *Butterfly* image from Set5 (the blur kernel is 7×7 Gaussian kernel with standard deviation 1.6, the scale factor is 3). The proposed deep CNN denoiser prior based optimization method can super-resolve LR image by tuning the blur kernel and scale factor without training.

Reference

[1] K. Zhang, W. Zuo, Y. Chen, D. Meng and L. Zhang, "Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising", in IEEE Transactions on Image Processing, vol. 26, no. 7, pp. 3142-3155, July 2017. [2] S. Gu, L. Zhang, W. Zuo and X. Feng, "Weighted nuclear norm minimization with application to image denoising", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2014: 2862-2869.

IEEE 2017 Conference on **Computer Vision and Pattern** Recognition

Experiments

(e) Proposed (29.78dB) (c) NCSR (27.50dB) Figure: Image deblurring performance comparison (the blur kernel is Gaussian kernel with standard deviation 1.6, the noise level

(c) SRCNN (24.46dB)

Code: https://github.com/cszn/ircnn