DEEPPERMNET: VISUAL PERMUTATION LEARNING

RODRIGO SANTA CRUZ, BASURA FERNANDO, ANOOP CHERIAN AND STEPHEN GOULD THE AUSTRALIAN NATIONAL UNIVERSITY, CANBERRA, AUSTRALIA FIRSTNAME.LASTNAME@ANU.EDU.AU

Australian National Jniversity

1 - INTRODUCTION & MOTIVATION

- Tasks in different fields involve learning a function that can recover the underlying structure of the data.
- Applications: Jigsaw puzzle in computer graphics, DNA and RNA modeling in biology, and re-assembling relics in archeology.
- Computer Vision: image ranking and self-supervised representation learning.
- We propose the Visual Permutation Learning task as a generic formulation to learn structural concepts intrinsic to natural images and ordered image sequences.

VISUAL PERMUTATION LEARNING

Can we assign a meaningful order to a given collection of images ?

We hypothesize that learning machines need to understand semantic concepts, visual patterns and image features in order to solve these tasks.

TASK: Given a permuted image sequence *X*, predict the permutation matrix *P* such that $P^{-1} = P^T$ recovers the ordered sequence X.

We propose to learn a **LEARNING:** parametrized function $f_{\theta}(\cdot)$ that maps from an image sequence to a doubly stochastic matrix,

 $f_{\theta}: \tilde{X} \in \mathcal{S}^c \times \mathcal{P}^l \mapsto Q \in \mathcal{B}^l$

by minimizing the regularized empirical risk,

 $\underset{\theta}{\text{minimize}} \qquad \sum \quad \Delta\left(P, f_{\theta}(\tilde{X})\right) + R\left(\theta\right)$ $(X,P) \in \mathcal{D}$

where $\mathcal{D} = \{(X, P) \mid X \in \mathcal{S}^c \text{ and } P \in \mathcal{P}^l\}$ is a synthetically created training set.

INFERENCE: $X = \hat{P}^T \tilde{X}$

 $\hat{P} \in \underset{\hat{P} \in \mathcal{P}^{l}}{\operatorname{argmin}} \quad \left\| \hat{P} - Q \right\|_{F}$

NOTE:

- Doubly-stochastic matrices as differentiable relaxation of permutation matrices.
- \mathcal{D} can be generated on-the-fly providing a huge amount of data.
- End-to-End Learning: image representation + permutation problem.

4 - SINKHORN NORM. LAYER

- DEEPPERMNET

SINKHORN'S THEOREM: Any non-negative square matrix can be converted to a DSM by alternating between rescaling its rows and columns to one.

$$R_{i,j}(Q) = \frac{Q_{i,j}}{\sum_{k=0}^{d} Q_{i,k}}; C_{i,j}(Q) = \frac{Q_{i,j}}{\sum_{k=0}^{d} Q_{k,j}}$$
$$S^{n}(Q) = \begin{cases} Q, & \text{if } n = 0\\ C\left(R\left(S^{n-1}\left(Q\right)\right)\right), & \text{otherwise.} \end{cases}$$

Note that $S^n(Q)$ is differentiable!

5 - APPLICATIONS

Permutation Prediction

Method	l	Length	KT	HS	NE
Naive App.	lnn	4	0.859	0.893	0.062
	App.	8	0.774	0.832	0.1
0:11	Т	4	0.884	0.906	0.019

Image Ranking Based on Attributes

Ranking Examples & Saliency Maps

Method	Public Figures	OSR
Relative Att.	80.56	88.80
Relative Forest	83.37	90.41

Bushy-Eyebrows	10
(Public Figures)	-
	Contraction of the second

DeepPermNet	98.14	98.48	
Deep Relative Att.	94.52	97.77	
End-to-End Loc. Rank.	_	97.02	
Local Learning	89.72	92.37	

Self-Supervised Repr. Learning

Method	Classification (mAP%)	FRCN Detection (mAP%)	FCN Segmentation (%mIU)
ImageNet	78.2	56.8	48.0
Random Gaussian	53.3	43.4	19.8
Context Prediction	55.3	46.6	-
Temporal coherence	58.4	44.0	-
In-painting	56.5	44.5	29.7
Colorization	65.6	47.9	35.6
Jigsaw Puzzle	68.6	51.8	36.1
DeepPermNet	69.4	49.5	37.9