

Motivation:

> Face->attribute tasks are less challenging now. How about the inverse problem attribute->face?

Fig. 1 From face -> attribute to attribute -> face.

- > Attribute manipulation should be similar to
 - Residual learning: manipulated images = input images + residual images
- > Dual learning: input images -> manipulated images -> input images

Residual learning [CVPR'16]

Dual learning for machine translation [NIPS'16]

Fig. 2 Residual learning and dual learning

Method:

The overall framework is a GAN based framework. The details are as follows.

- \succ Image transformation networks G₀/G₁+ discriminative network D
- \succ G₀/G₁ learns residual images for attribute manipulation
- Network trained in a dual learning scheme

Learning Residual Images for Face Attribute Manipulation

Wei Shen, Rujie Liu Fujitsu R&D center

Fig. 4 The architecture of the proposed method.

Loss function $\ell_G = \ell_{GAN} + \ell_{dual} + \epsilon$ $> G_0/G_1$: $\ell_{GAN} = \begin{cases} -\log(D(G_i(x_i))) & i = 0, \\ -\log(1 - D(G_i(x_i))) & i = 1. \end{cases}$ $\ell_{pix}(r_i) = ||r_i||_1, i = 0, 1$ $\ell_{per}(x)$ $\ell_{cls}(t,p) = -\log(p_t), t =$ ≻ D:

Results on CelebA:

6 attributes: glasses, no_beard, mouth_open, smile, male, young.

$$\begin{aligned} \alpha \ell_{pix} + \beta \ell_{per} \\ \beta &= \begin{cases} -\log(1 - D(G_{1-i}(\tilde{x}_i))) & i = 0, \\ -\log(D(G_{1-i}(\tilde{x}_i))) & i = 1. \end{cases} \\ \epsilon, \tilde{x}) &= ||\phi(x) - \phi(\tilde{x})||_1 \end{aligned}$$

smile

(a) Fig. 6 Applying remove-glasses network on faces without glasses (a) and applying add-glasses network on faces with glasses (b). 1st row: input images. 2nd row: manipulated images. 3rd row: residual images.

Concolusion:

- > A GAN based framework for attribute manipulation
- Learning attribute specific area as residual images
- Adopting dual learning to improve image quality

IEEE 2017 Conference on **Computer Vision and Pattern** Recognition

no beard

mouth_open

male

young

Fig.5 1st row: input images. 2nd row: VAE/GAN[ICML'16] results. 3rd row: ours. 4th row: residual images

(b)