

Improved stereo matching with Constant Highway Networks and Reflective Confidence Amit Shaked and Lior Wolf

Main Contributions

- A new highway network architecture for patch matching, suited for metric learning VS multiclass classification.
- A novel way to **measure the correctness** of the output of a CNN via reflective learning, that outperforms any other technique.
- X A CNN based post processing step to compute the disparity image, instead of the previously suggested WTA strategy.
- A better occlusion and mismatch detection and interpolation.
- Hybrid loss for better use of description-decision network architecture.
- Improving the state of the* art in the KITTI dataset for stereo matching by a significant margin, for both accurate and fast methods.

Multilevel constant highway network

block skipped data

Constant highway skip-connection:

Outer λ-residual block:

$$y_{i+1} = f_{i+1}(y_i) + \lambda_{i+1} \cdot y_i$$

$$y_{2} = \lambda_{0}y_{0} + \lambda_{2} \cdot y_{1} + f_{2}(y_{1})$$

= $\lambda_{0}y_{0} + \lambda_{2}(\lambda_{1}y_{0} + f_{1}(y_{0})) +$
= $(\lambda_{0} + \lambda_{2}\lambda_{1})y_{0} + \lambda_{2}f_{1}(y_{0}) +$

 $+ f_2(\lambda_1 y_0 + f_1(y_0))$ $+ f_2(\lambda_1 y_0 + f_1(y_0))$

correct	$ \text{if} d-D^R(\mathbf{pd}) \leq \tau_1 \text{or} \\$	
	$(C^L(\mathbf{p}) \ge \tau_2 \text{ and } C^L(\mathbf{p}) - C^R(\mathbf{pd}) \ge \tau_3)$	C^L
nismatch	if there exist $\hat{d} \neq d$ s.t. $ \hat{d} - D^R(\mathbf{p}\hat{d}) < \tau_4$	po
cclusion	otherwise	C^L
		-
		a

Mismatch - the median of the nearest neighbors labeled as correct from 16 different directions.

Occlusion - move left until the first correct pixel and use its value.

Results

A: Reference image

The highest ranking methods on KITTI:

	Method	Set.	NOC	ALL	runtime		Method	Set	NOC	ALL	runtime
1	Ours		2.91	3.42	48s	1	Ours		2.27	3.40	48 s
2	Displets v2[10]	S	3.09	3.43	265s	2	PCBP[25]		2.36	3.45	68s
3	PCBP[25]		3.17	3.61	68s	3	Displets v2[10]	S	2.37	3.09	265s
4	Ours-fast		3.29	3.78	2.8 s	4	MC-CNN-acrt[36]		2.43	3.63	67s
5	MC-CNN-acrt[36]		3.33	3.89	67s	5	cfusion[25]	MV	2.46	2.69	70s
								L.L.T.			

(a) KITTI 2015

The highest ranking methods on KITTI for methods under 5 sec:

Rank	Method	NOC	ALL	runtime
1	Ours-fast	3.29	3.78	2.8 s
2	DispNetC[22]	4.05	4.34	0.06s
3	Content-CNN[21]	4.00	4.54	1s
4	MC-CNN-fast[36]	?	4.62	0.8s
5	SGM+CNN(anon)	4.36	5.04	2s

(a) KITTI 2015

Residual architectures comparison:

	Inner	Outer	KITTI	KITTI	N
	shortcut	shortcut	2012	2015	
mc-cnn[36]	-	-	2.84	3.53	9.
Highway[32]	-	-	2.81	3.51	9.
ResNet[16]	A	-	2.82	3.71	10
$\bar{\lambda}$ variant	λ	-	2.81	3.55	10
DC[6]	A	-	3.86	5.02	11
$\overline{\lambda}$ variant	λ	-	3.42	4.43	11
RoR[18]	A	С	2.86	3.52	9.
$\begin{bmatrix} -\overline{\lambda} \text{ variant} \end{bmatrix}$	λ	$\lambda \cdot C$	2.84	3.53	9.
Variants of	A	Α	2.78	3.49	9.
our method	λ	Α	2.75	3.42	9.
without the	A	λ	2.78	3.46	1
hybrid loss	λ	λ	2.73	3.42	9.
λ -ResMatch	λ	λ	2.71	3.35	9.

Table 6: The validation errors of different architectures and their λ -variants, when trained on 20% of the data. "A" shortcut is the identity connection, "C" is 1X1-convolution and " λ " is our constant highway skip-connection.

Most relevant references

[1] J. Zbontar and Y. LeCun. Computing the stereo matching cost with a convolutional neural network, CVPR, 2015. 2] W. Luo, A. Schwing, and R. Urtasun. Efficient deep learning for stereo matching. CVPR. 2016.

IEEE 2017 Conference on **Computer Vision and Pattern** Recognition

B: Baseline errors

C: Out solution

(b) KITTI 2012

Rank	Method	NOC	ALL	runtime				
1	Ours-fast	2.63	3.68	2.8 s				
2	MC-CNN-fast[36]	2.82	?	0.7s				
3	Content-CNN[21]	3.07	4.29	0.7s				
4	Deep Embed[2]	3.10	4.24	3s				
5	SPS-st[34]	3.39	4.41	2s				

(b) KITTI 2012

Confidence Measures Comparison:

	Ref	MSM	Prob	CUR	PKRN	NEM	LRD
KITTI2012	0.943	0.928	0.648	0.772	0.930	0.919	0.833
KITTI2015	0.894	0.850	0.758	0.832	0.853	0.864	0.812

Table 7: The average AUC over the entire validation set for different confidence measures.

Figure 4: AUC of confidence measures on 40 random validation images from the KITTI 2015 stereo data set.

> Scan for our codebase:

^{**} The criterion is similar to [2]