

#Keyldeas

SRGAN: Employ a generative adversarial network (GAN) [1] for image super-resolution (SR)

Perceptual Loss: Optimize a perceptual loss function based on a content loss calculated in VGG feature space [2,4] and a adversarial loss [1,3] that pushes the solutions to the natural image manifold.

MOS-Testing: Perform an extensive mean-opinion-score (MOS) test to confirm hugely significant gains in perceptual quality and limitations of mean-squared-error (MSE) based quality measures.

#TheProblem

Super-resolve a low-resolution input image I^{LR} that was obtained by 4x downscaling a high-resolution image I^{HR}. We train a convolutional neural network (CNN) with optimal parameters such that:

 $\hat{\theta}_G = \arg\min_{\theta_G} \frac{1}{N} \sum_{I} l^{SR} (G_{\theta_G}(I_n^{LR}), I_n^{HR})$

#Motivation

The Limitation of MSE based optimization is that it encourages average-like solutions that are overly smooth and generally not reside on the manifold of natural images.

#PerceptualLossFunction

Content loss that ensures high level content is preserved without penalizing low level details [2,3,4,6].

 $l^{SR} =$

MSE or VGG

content loss

perceptual loss (for VGG based content losses)

Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network

Christian Ledig, Lucas Theis, Ferenc Huszár, Jose Caballero, Andrew Cunningham, Alejandro Acosta, Andrew Aitken, Alykhan Tejani, Johannes Totz, Zehan Wang, Wenzhe Shi {first name initial}{surname}@twitter.com

Adversarial loss that encourages solutions from the natural image manifold [1,3].

#ExperimentsAndResults

Evaluation Measures

MOS averaged over scores from 26 human raters. Scores range from 1 (worst, nearest neighbor) to 5 (best, original HR image)

Influence of Network Depth

- Higher performance using skipconnections
- Depth is beneficial for PSNR
- SRGAN gets more difficult to train for deeper networks

Investigation of content loss

Loss on higher level VGG features yields better texture detail

Set14	SRRe	sNet-	SRGAN-			
	MSE	VGG22	MSE	VGG22	VGG54	
PSNR	28.49	27.19	26.92	26.44	26.02	
MOS	2.98	3.15*	3.43	3.57	3.72*	

Comparison to state of the art (BSD100)

BSD100	NN	SRCNN	SelfEx	DRCN	ESPCN	SRResNet	SRGAN	HR
PSNR	25.02	26.68	26.83	27.21	27.02	27.58	25.16	∞
MOS	1.11	1.87	1.89	2.12	2.01	2.29	3.56	4.46

#Visuals

#References

[1] I. Goodfellow, et al., "Generative adversarial nets", NIPS, 2014. [2] K. Simonyan and A. Zisserman. "Very deep convolutional networks for large-scale image recognition", ICLR, 2015. [3] A. Dosovitskiy and T. Brox. "Generating images with perceptual similarity metrics based on deep networks", NIPS, 2016. [4] J. Bruna, et al., "Super-resolution with deep convolutional sufficient statistics", ICLR, 2016 [5] A. Radford, et al., "Unsupervised representation learning with deep convolutional generative adversarial networks", ICLR, 2016 [6] J. Johnson, et al., "Perceptual losses for real-time style transfer and super-resolution", ECCV, 2016

Twitter

SRGAN closes the MOS gap between the state of the art and original high resolution images by more than 50%

