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Definition (Orbitope [1]) An orbitope is the convex hull of an orbit of a compact algebraic
group that acts linearly on a real vector space. The orbit has the structure of a real algebraic
variety, and the orbitope is a convex semi-algebraic set.

A 3-dimensional rotation matrix R ∈ SO(3) has dimension three. However, its tautological
orbitope is a convex body of dimension nine. The following theorem is a key ingredient of this
work.

Theorem (SO(3) Orbitope [1]) The tautological orbitope conv(SO(3)) is a spectrahedron whose
boundary is a quartic hypersurface. A 3×3 matrix A lies in conv(SO(3)) if and only if,

Proposition (SSO(3) and SO(3) Orbitope) ∀ S ∈ SSO(3) there exists A ∈ conv(SO(3)) such that S
= α A, if and only if ∃ α > 0:

where,
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Notation

Spectrahedron

A spectrahedron is the intersection of positive 
semi-definite matrices with an affine-linear 
space.

where
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Motivation

Consensus maximization has proven to be a useful tool for robust estimation. In this
paper, we show the solution space can be reduced by introducing Linear Matrix
Inequality (LMI) constraints. This leads to significant speed ups of the optimization
time even for large amounts of outliers, while maintaining global optimality.

Contributions

• General LMI constraints can be used in a variety of geometric problems. We show
derivations for rigid-body, rigid-body + scale, restricted rotations, essential matrix.

• LMI constraints used within Branch-and-Bound (BnB) paradigm to optimally solve 
the consensus maximization.

• LMI constraints speeds up the search process.
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Runtime for increasing number of points and outlier ratio.Time comparison obtained with and without the LMI constraint.

Results - Similarity Transformation (Synthetic Data)

Conclusions

• We present a general global optimization framework for consensus maximization with LMI 
constraints.

• Proposed LMI constraints offer a significant speedup in computation time, under a globally 
optimal framework, by reducing the solution search space.

• Experiments on problems of similarity transformation, absolute pose, and relative pose 
estimation were successfully conducted. 

RANSAC (blue) vs. Ours (black)

Results – Relative Pose (Real Data)

Results – Absolute Pose (Real Data)

Code: http://cvg.ethz.ch/research/conmax/

RANSAC vs. Our method with and without LMI constraints.

Binary variables

LMI

Mixed Integer Programming

The consensus maximization problem can be restated as Mixed Integer Semi-Definite Programming (MI-SDP), 
allowing for global optimization:

Residual bounds


