

Introduction

Main Contributions:

• Our SCN can be considered as efficiently learning an ensemble of 1000 LSTMs, one for each semantic concept.

• Our SCN provides an interpretable way to control the generation of captions.

Key ideas:

- Semantic concepts (*i.e.*, tags) are first detected from the image.
- The SCN then extends each weight matrix of the long short-term memory
- (LSTM) network to an ensemble of tag-dependent weight matrices.
- The degree to which each member of the ensemble is used to generate a caption is tied to the image-dependent probability of the corresponding tag.

Semantic Compositional Networks

Semantic concept detection:

- First select a set of tags from the captions in the training set
- Then treat image tagging as a multi-label classification task
- Let $\boldsymbol{y}_i = [y_{i1}, \ldots, y_{iK}] \in \{0, 1\}^K$ be the label vector
- $y_{ik} = 1$ if image i is annotated with tag k; $y_{ik} = 0$ otherwise.
- Let v_i represent the image feature vector, the cost function to be minimized is

$$\frac{1}{N} \sum_{i=1}^{N} \sum_{k=1}^{K} \left(y_{ik} \log s_{ik} + (1 - y_{ik}) \log(1 - s_i) \right)$$

• $s_i = \sigma(f(v_i))$ is the semantic feature vector.

Review of RNN for image captioning:

- The probability of caption ${f X}$ given image feature vector v is

$$p(\mathbf{X}|\mathbf{I}) = \prod_{t=1}^{T} p(\boldsymbol{x}_t|\boldsymbol{x}_0, \dots, \boldsymbol{x}_{t-1}, \boldsymbol{v})$$

- Each conditional $p(\boldsymbol{x}_t | \boldsymbol{x}_{< t}, \boldsymbol{v})$ is specified as softmax $(\mathbf{V}\boldsymbol{h}_t)$.
- Consider an RNN with a simple transition function

$$\boldsymbol{h}_t = \sigma(\mathbf{W}\boldsymbol{x}_{t-1} + \mathbf{U}\boldsymbol{h}_{t-1} + I(t=1) \cdot \mathbf{C})$$

SCN: extending each weight matrix of the conventional RNN to be an ensemble of a set of tag-dependent weight matrices

$$\boldsymbol{h}_t = \sigma(\mathbf{W}(\boldsymbol{s})\boldsymbol{x}_{t-1} + \mathbf{U}(\boldsymbol{s})\boldsymbol{h}_{t-1} + I(t=1) \cdot$$

- Given $s \in \mathbb{R}^K$, we define tensors $\mathbf{W}_{\mathcal{T}} \in \mathbb{R}^{n_h \times n_x \times K}$ and $\mathbf{U}_{\mathcal{T}} \in \mathbb{R}^{n_h \times n_h \times K}$.
- $\mathbf{W}(s) \in \mathbb{R}^{n_h imes n_x}$ and $\mathbf{U}(s) \in \mathbb{R}^{n_h imes n_h}$ can be specified as

$$\mathbf{W}(\boldsymbol{s}) = \sum_{k=1}^{K} s_k \mathbf{W}_{\mathcal{T}}[k], \ \mathbf{U}(\boldsymbol{s}) = \sum_{k=1}^{K} s_k \mathbf{U}_{\mathcal{T}}[k]$$

• Can be interpreted as *jointly* training an ensemble of K RNNs in total. • Though appealing, the number of parameters is proportional to K, which is prohibitive for large K (e.g., K = 1000 for COCO).

In order to remedy this problem, we factorize $\mathbf{W}(s)$ and $\mathbf{U}(s)$ as

$$\mathbf{W}(\boldsymbol{s}) = \mathbf{W}_a \cdot \mathsf{diag}(\mathbf{W}_b \boldsymbol{s}) \cdot \mathbf{W}_c,$$
$$\mathbf{U}(\boldsymbol{s}) = \mathbf{U}_a \cdot \mathsf{diag}(\mathbf{U}_b \boldsymbol{s}) \cdot \mathbf{U}_c$$

$$\mathbf{U}(\boldsymbol{s}) = \mathbf{U}_a \cdot \mathsf{diag}(\mathbf{U}_b \boldsymbol{s}) \cdot \mathbf{U}_c$$

Semantic Compositional Networks for Visual Captioning

[†]Duke University, *Tsinghua University, [‡]Microsoft Research Redmond

- - (\land) (2)
- (3)
- (4) $\mathbf{C}\boldsymbol{v}$
- - (6)

Figure: SCN learns an ensemble of 1000 LSTMs, one for each semantic concept.

Figure: Examples of SCN-based image captioning.

SCN: we obtain SCN with an RNN as

$$\tilde{\boldsymbol{x}}_{t-1} = \mathbf{W}_b \boldsymbol{s} \odot \mathbf{W}_c \boldsymbol{x}_{t-1}, \qquad \tilde{\boldsymbol{h}}_{t-1} = \mathbf{U}_b \boldsymbol{s} \odot \mathbf{U}_c \boldsymbol{h}_{t-1}, \qquad (8)$$

 $\boldsymbol{z} = I(t=1) \cdot \mathbf{C} \boldsymbol{v}, \qquad \boldsymbol{h}_t = \sigma(\mathbf{W}_a \tilde{\boldsymbol{x}}_{t-1} + \mathbf{U}_a \tilde{\boldsymbol{h}}_{t-1} + \boldsymbol{z}). \qquad (9)$

Let \boldsymbol{w}_{bk} represent the kth column of \mathbf{W}_{bk} $\mathbf{W}(\boldsymbol{s}) = \sum_{k=1}^{K} s_k [\mathbf{W}_a]$

- The RNN weight matrices that correspond to each tag share "structure".
- We introduce LSTM units and generalize SCN-RNN to SCN-LSTM.

Zhe Gan[†], Chuang Gan^{*}, Xiaodong He[‡], Yunchen Pu[†], Kenneth Tran[‡], Jianfeng Gao[‡], Lawrence Carin[†], Li Deng[‡]

Model architecture

Figure: Overview of the proposed model.

Detected semantic concepts:

person (0.998), baby (0.983), holding (0.952), small (0.697), sitting (0.638), toothbrush (0.538), child

1. Only using "baby": a baby in a 2. Only using "holding": a person holding a hand 3. Only using "toothbrush": a pair of toothbrush 4. Only using "mouth": a man with a toothbrush 5. Using "baby" and "mouth": a baby brushing its teeth

Overall caption generated by the SCN: a baby holding a toothbrush in its mouth

8. Replace "toothbrush" with "pizza": a baby holding a piece of pizza in his mouth

$$a \cdot \operatorname{diag}(\boldsymbol{w}_{bk}) \cdot \mathbf{W}_c$$
 (10)

Methods

Best in CVP LSTM-R LSTM-T LSTM-RT $LSTM-RT_2$ SCN-LSTM SCN-LSTM

COCO results on test server

Model	B-1	B-2	B-3	B-4	M	R	C
SCN-LSTM	0.740	0.575	0.436	0.331	0.257	0.543	1.003
ATT	0.731	0.565	0.424	0.316	0.250	0.535	0.943
OV	0.713	0.542	0.407	0.309	0.254	0.530	0.943
MSR Cap	0.715	0.543	0.407	0.308	0.248	0.526	0.931

Youtube2Text for video captioning

Importance of using detected tags

Importance of using visual features

Experiments

Code: https://github.com/zhegan27/Semantic_Compositional_Nets **COCO** results on Karpathy's split (small 5k test)

-	_						
	COCO						
	B-1	B-2	B-3	B-4	Μ	С	
PR'16	0.74	0.56	0.42	0.31	0.26	0.94	
	0.698	0.525	0.390	0.292	0.238	0.889	
	0.716	0.546	0.411	0.312	0.250	0.952	
	0.724	0.555	0.419	0.316	0.252	0.970	
	0.730	0.568	0.430	0.322	0.249	0.977	
	0.728	0.566	0.433	0.330	0.257	1.012	
Ens. of 5	0.741	0.578	0.444	0.341	0.261	1.041	

Model	B-4	Μ	С
Best in CVPR'16	0.499	0.326	0.658
LSTM-CR	0.469	0.317	0.688
LSTM-T	0.473	0.324	0.699
LSTM-CRT	0.475	0.316	0.647
$LSTM-CRT_2$	0.469	0.326	0.706
SCN-LSTM	0.502	0.334	0.770
SCN-LSTM Ens. of 5	0.511	0.335	0.777

Detected Tags:

book (1), shelf (1), table (0.965), sitting (0.955), person (0.955), library (0.908), room (0.829), front (0.464)

Generated captions:

LSTM-R: a young girl is playing a video game **LSTM-RT₂**: a group of people sitting at a table **SCN-LSTM**: two women sitting at a table in a library

Detected Tags:

indoor (0.952), dog (0.828), sitting (0.647), stuffed (0.602), white (0.544), next (0.527), laying (0.509), cat (0.402)

Generated captions:

SCN-LSTM-T: a dog laying on top of a stuffed animal **SCN-LSTM:** a teddy bear laying on top of a stuffed animal