

Quality Aware Network for Set to Set Recognition

Yu Liu, Junjie Yan, Wanli Ouyang

SenseTime Group Limited The University of Sydney

IEEE 2017 Conference on Computer Vision and Pattern Recognition

Set to set recognition

DIFFERENT FRAMES HOLD DIFFERENT QUALITIES BUT COMPLEMENTARY INFORMATION

Pooling all frames for set level representations

QAN WEAKEN THE NOISY SAMPLES AND NARROW DOWN IDENTITIES' VARIANCES.

Learning Quality without label

WEIGHTED POOLING MECHANISM

$$\mathcal{F}(R_{I_1}, R_{I_2}, \cdots, R_{I_N}) = \frac{\sum_{i=1}^N \mu_i R_{I_i}}{\sum_{i=1}^N \mu_i} \quad \mu_i = Q(I_i)$$

AUTOMATIC QUALITY LEARNING

$$\frac{\partial \mathcal{F}}{\partial R_{I_{i}}} = \frac{\partial R_{a}(S)}{\partial R_{I_{i}}} = \mu_{i}$$

$$\frac{\partial \mathcal{F}}{\partial \mu_{i}} = \frac{\partial R_{a}(S)}{\partial \mu_{i}} = R_{I_{i}} - R_{a}(S)$$

$$\frac{\partial L_{veri}}{\partial R_{I_{i}}} = \frac{\partial R_{a}(S)}{\partial R_{I_{i}}} \cdot \frac{\partial L_{veri}}{\partial R_{a}(S)} = \frac{\partial L_{veri}}{\partial R_{a}(S)} \cdot \mu_{i}$$

$$\frac{\partial L_{veri}}{\partial \mu_{i}} = \frac{\partial R_{a}(S)}{\partial \mu_{i}} \cdot \left(\frac{\partial L_{veri}}{\partial R_{a}(S)}\right)^{T}$$

$$= \sum_{j=1}^{D} \left(\frac{\partial L_{veri}}{\partial R_{a}(S)_{j}} \cdot (x_{ij} - R_{a}(S)_{j})\right)$$

Network structure

WE IMPLEMENT THIS MECHANISM IN AN END-TO-END CNR

DETAILS IN SCORE GENERATION UNIT Q

Quality learned by QAN

MAGES WITH THEIR QUALITIES

UALITY BY OAN IS SIMILAR WITH BUT BUTTER THAN THAT BY HUMA

Enhancing Acc. on Face and Human recognition

PRID2011					
Methods	CMC1	CMC5	CMC10	CMC2	
QAN	90.3	98.2	99.32	100.0	
CNN+AvePool	81.3	96.6	98.5	99.6	
CNN+Min(cos)	69.8	91.3	97.1	99.8	
CNN+RNN [36]	70	90	95	97	
STFV3D [22]	42.1	71.9	84.4	91.6	
TDL [40]	56.7	80.0	87.6	93.6	
eSDC [34]	48.3	74.9	87.3	94.4	
DVR [34]	40.0	71.7	84.5	92.2	
LFDA [25]	43.7	72.8	81.7	90.9	
KISSME [16]	34.4	61.7	72.1	81.0	
LADF [21]	47.3	75.5	82.7	91.1	
TopRank [19]	31.7	62.2	75.3	89.4	

- o P - total [- v]	0 2	<u> </u>	,	0,,,			
iLIDS-VID							
Methods	CMC1	CMC5	CMC10	CMC2			
QAN	68.0	86.8	95.4	97.4			
CNN+AvePool	60.6	84.9	89.8	93.6			
CNN+Min(cos)	49.3	79.4	88.2	91.9			
CNN+RNN [36]	58	84	91	96			
STFV3D [22]	37.0	64.3	77.0	86.9			
TDL [40]	56.3	87.6	95.6	98.3			
eSDC [34]	41.3	63.5	72.7	83.1			
DVR [34]	39.5	61.1	71.7	81.0			
LFDA [25]	32.9	68.5	82.2	92.6			
KISSME [16]	36.5	67.8	78.8	87.1			
LADF [21]	39.0	76.8	89.0	96.8			
TopRank [19]	22.5	56.1	72.7	85.9			

DeepFace-single [

 $84.8 \pm 1.4\%$

PERSON REDENTIFICATION

ERTIFICA	TION		I-JBA
TPR@FPR	1e-3	1e-2	1e-1
QAN	89.31±3.92%	94.20±1.53%	98.02±0.55%
CNN+AvePool	85.30±3.48%	93.81 ± 1.44	$97.85 \pm 0.61\%$
CNN+Min(cos)	82.74±3.61%	92.06±1.98	$97.29 \pm 0.67\%$
NAN [38]	78.5±2.8%	89.7±1.0%	95.9±0.5%
OCNN+metric [4]	-	$78.7 \pm 4.3\%$	$94.7 \pm 1.1\%$
LSFS [31]	51.4±6.0%	$73.3\pm3.4\%$	$89.5 \pm 1.3\%$
OpenBR [15]	$10.4 \pm 1.4\%$	$23.6 \pm 0.9\%$	43.3±0.6%