

IVU Lab

1. Summary

We address the blur detection problem from a single image without requiring any knowledge about the blur type, level, or camera settings. Our approach computes blur detection maps based on a novel High-frequency multiscale Fusion and Sort Transform (HiFST) of gradient magnitudes.

2. Challenges and Contributions

Challenges:

- There are only few methods focusing on spatially-varying blur detection regardless of the blur type [1, 2, 3, 4, 5, 6], and the rest perform well only on defocus blur or motion blur.
- The performance of most of the existing methods degrades drastically when taking into account the effects of camera noise and distortion.

Contribution:

- We propose a robust spatially-varying blur detection method from a single image to determine the level of blur at each location in an image.
- We evaluate our proposed algorithm on both defocus and motion blur types to demonstrate the effectiveness of our method.
- We also test the robustness of our method by adding different levels of noise as well as different types and levels of distortions to the input image. We compare our method with algorithms using their provided state-of-the-art implementations and demonstrate that our proposed method outperforms existing state-of-the-art methods quantitatively and qualitatively.
- Finally, we provide a few applications of our method including camera focus points estimation, blur magnification, depth of field estimation, depth from focus, and deblurring.

Spatially-Varying Blur Detection Based on Multiscale Fused and Sorted Transform Coefficients of Gradient Magnitudes

S. Alireza Golestaneh and Lina Karam IVU Lab, School of ECEE, Arizona State University, Tempe, AZ, USA

3. Proposed Spatially-Varying Blur Detection

Our proposed method is based on the fusion, sorting, and normalization of multiscale highfrequency DCT coefficients of gradient magnitudes to detect blurred and unblurred regions from a single image without having any information about the camera settings or the blur type.

4. Results

We evaluate the performance of our proposed method, HiFST, quantitatively and qualitatively. As shown in the paper, our proposed method outperforms the existing algorithms in terms of both quantitative and qualitative results regardless of the blur type. Moreover, we evaluate the robustness of our method to different types and levels of distortions.

(Proposed) Fig. 2: Quantitative visual comparison

comparison on the blur dataset [3] for different methods.

detecting blur for a photo taken under different aperture sizes in a dynamic setting. First row: input images. Second row: detected blur maps. Third row: estimated camera focus points.

In this paper we addressed the challenging problem of blur detection from a single image without having any information about the blur type or the camera settings. Our algorithm achieves state-of-the-art results on blurred images with different blur types and blur levels. Furthermore, we showed that the proposed method can benefit different computer vision applications including camera focus points map estimation, blur magnification, depth of field estimation, depth from focus, and deblurring.

- Recognition (CVPR), pages 2512–2519, 2010.
- (CVPR), pages 1–8, 2008.
- 2965–2972, 2014.
- (CVPR), pages 657–665, 2015.
- 1397-1400, 2011.
- [6] C. Tang, J. Wu, Y. Hou, P. Wang, and W. Li. A spectral and spatial approach of coarse-to-fine blurred image region detection. IEEE Signal Processing Letters, 23(11):1652 – 1656, 2016.

IEEE 2017 Conference on Computer Vision and Pattern Recognition

5. Applications

(a)

Fig. 5. Application of our method to changing the camera focus and DFF. (a) & (c) are images with different focus areas. (b) & (d) are our estimated

(b)

Fig. 6. Blur magnification. (a) Input image. (b) Our estimated blur map. (c) Results after blur magnification using our proposed blur map.

6. Conclusion

7. References

[1] Z. A. Chakrabarti, T. Zickler, and W. T. Freeman. Analyzing spatially-varying blur. In IEEE Conference on Computer Vision and Pattern [2] R. Liu, Z. Li, and J. Jia. Image partial blur detection and classification. In IEEE Conference on Computer Vision and Pattern Recognition [3] J. Shi, L. Xu, and J. Jia. Discriminative blur detection features. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages [4] J. Shi, L. Xu, and J. Jia. Just noticeable defocus blur detection and estimation. In IEEE Conference on Computer Vision and Pattern Recognition [5] B. Su, S. Lu, and C. L. Tan. Blurred image region detection and classification. In 19th ACM international conference on Multimedia, pages