

**Background:** 



J. Shotton et al., CVPR'11

> 3D action recognition based on skeletal data





Lie group representation of moving skeletons





- Two Motivations
  - Speed variations (Temporal misalignment)
  - Compute a nominal curve and warp all the curves to this nominal using dynamic time warping (DTW) [*M. Muller, 2007*]

 $3^*3^*2 * C_M^2$  combinations/rotations\* FrameNum



- Lie group representations for action recognition tend to be extremely high-dimensional
- Adopt PCA-like method to learn compact and discriminative features



## **Deep Learning on Lie Groups for Skeleton-based Action Recognition** Zhiwu Huang, Chengde Wan, Thomas Probst, Luc Van Gool



## **Evaluation:**

- Three datasets

| Method                                   | G3D-Gaming | Method         | HDM05         | Method         | RGB+D-subject | RGB+D-view |
|------------------------------------------|------------|----------------|---------------|----------------|---------------|------------|
| RBM+HMM [32]                             | 86.40%     | SPDNet [18]    | 61.45%± 1.12  | HBRNN [13]     | 59.07%        | 63.97%     |
| SE [41]                                  | 87.23%     | SE [41]        | 70.26%±2.89   | Deep RNN [37]  | 56.29%        | 64.09%     |
| SO [42]                                  | 87.95%     | SO [42]        | 71.31%±3.21   | Deep LSTM [37] | 60.69%        | 67.29%     |
| LieNet-0Block                            | 84.55%     | LieNet-OBlock  | 71 26%+ 2 12  | PA-LSTM [37]   | 62.93%        | 70.27%     |
| LieNet-1Block                            | 85.16%     | LieNet-1Block  | 73.35%+1.14   | SI-LSIM [20]   | <b>69.</b> 2% | 11.1%      |
| LieNet-2Blocks                           | 86.67%     | LieNet-2Blocks | 75 78% + 2 26 | SE[41]         | 50.08%        | 52.76%     |
| LieNet-3Blocks                           | 89.10%     |                |               | JiaNat OPlash  | 52.1370       | 54 7907    |
| RBM+HMM [31}; S. Nie and Q. Ji , ICPR'14 |            |                |               | Lienet-UDIOCK  | 56 35%        | 34.78%     |
|                                          |            |                |               | LieNet-2Blocks | 58.02%        | 62.52%     |
| 5E[41]: R. Vemulapalli et al., CVPR 14   |            |                |               | LieNet-3Blocks | 61.37%        | 66.95%     |

SE[42]: R. Vemulapalli et al., CVPR'16 SPDNet [18]: Z.Huang et al., AAAI'17 HBRNN [13]: Y. Du et all., CVPR'15





- > Summary

## IEEE 2017 Conference on **Computer Vision and Pattern** Recognition



G3D-gaming [V. Bloom et al., CVPR'12 workshop]: 663 sequ., 20 motions HDM05 [M. Muller et al., Tech.'07]: 2337 sequences, 130 actions NTU RGB+D [A. Shahroudy et al., CVPR'16]: 56,000 seque., 60 motions

> Deep RNN/ISTM/PA-LSTM [37]: A. Shahroudy et al., CVPR'16 ST-ISTM [26]: J. Liu et al., ECCV'16

A manifold network structure to deeply learn Lie group representations ✤ A paradigm to incorporate the Lie group structure into deep learning ✤ A generalization of stochastic gradient descent optimization to Lie group