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Background:

 3D pose estimation from depth/RGB images

 3D action recognition based on skeletal data

 Lie group representation of moving skeletons

 Two Motivations

 Speed variations (Temporal misalignment)

 Compute a nominal curve and warp all the curves to this nominal using 

dynamic time warping (DTW) [M. Muller, 2007]

 Lie group representations for action recognition tend to be extremely 

high-dimensional 

 Adopt PCA-like method to learn compact and discriminative features

𝐶 𝑡 = 𝑅1,2 𝑡 , … , 𝑅𝑁,𝑀 𝑡 ,

∈ 𝑆𝑂 3 …× 𝑆𝑂(3)
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Lie Group Networks (LieNet):

 Overview (Manifold Networks)

 Accept rotation matrices (matrix Lie group) as inputs, and keep the 

Lie group structure across layers

 RotMap Layer

 Transform input rotation matrices to new rotation matrices, which are 

expected to be aligned more accurately for more reliable matching 

 RotPooling Layer

 Pool the rotation matrices at both spatial (a) and temporal (b) levels 

such that the Lie group feature dimensionality can be reduced 

 LogMap Layer

 Employ the logarithm map to flatten the Lie group 

 Network training

 Weight matrices reside on Lie group

 Riemannian optimization

Evaluation:

 Three datasets

 G3D-gaming [V. Bloom et al., CVPR’12 workshop]: 663 sequ., 20 motions

 HDM05 [M. Muller et al., Tech.’07]: 2337 sequences, 130 actions

 NTU RGB+D [A. Shahroudy et al., CVPR’16]: 56,000 seque., 60 motions

 Summary

 A manifold network structure to deeply learn Lie group representations

 A paradigm to incorporate the Lie group structure into deep learning

 A generalization of stochastic gradient descent optimization to Lie group

J. Shotton et al., CVPR’11 D. Meta et al., SIGRAPH’17

Additional time cost
Two-step system3*3*2∗ 𝑪𝑴

𝟐 combinations/rotations* FrameNum

High dimensionality
Shallow learning

R.Vemulapalli.,

CVPR’16
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Configuration analysis
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Figure 3. (a) Comparison of different LieNet configurations: with-

out using RotMap layers (w/o-RotMap), w/o-RotPooling layers,

w/o-LogMap layers and using all (w/-All) in LieNet-3Blocks for

G3D-Gaming. (b) Comparison of different pooling schemes:

using 1 spatial RotPooling layer (1SpaPooling, i.e., LieNet-

1Block), 2 spatial RotPooling layers (2SpaPooling), 1SpaPool-

ing+1 temporal RotPooling layer (1Spa1TemPooling, i.e., LieNet-

2Blocks), 1SpaPooling+2TemPooling (1Spa2TemPooling, i.e.,

LieNet-3Blocks) for G3D-Gaming.

…(b) Input (c) 1st layer: RotMap (d) 2nd layer: RotPooling (e) 7th layer: LogMap
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Figure 4. The example skeletons are reconstructed by the output

rotation matrices of some representative LieNet layers for pro-

cessing four action sequences from theG3D-Gaming dataset. The

bones in red are the interesting ones for the action classes.

it can take the role of DTW that solves the problem of

speed variations. The right of Fig.3 analyses the effec-

tiveness of the 1SpaPooling case (i.e., Fig.2(a)! (b)), and

shows the decreasing performance behavior of the 2Spa-

Pooling case (i.e., Fig.2(a)! (b)! (c)). Thus, wefinally uti-

lize 1SpaPooling and 2TemPooling (i.e., Fig.2(c)! (d)) in

the LieNet-3Blocks structure. Besides, we also study the

behavior of adding a rectified linear unit (ReLU)-like layer

(i.e., setting the matrix elements below a threshold ✏= 0.1

to zero) on thetop of theLogMap layer aspresented before.

Yet, the performance was worse (87.58%) than without.

Further, to validate the improvementsarefrom thecontribu-

tion of theRotMap and RotPooling layersrather than deeper

architectures, we build a regular (LeNet-like) deep struc-

ture, i.e., LogMap! 2⇥(FC! MaxPooling)! FC! ReLU

! FC! Softmax, that applies 8 regular layers on the con-

Method HDM05

SPDNet [18] 61.45%± 1.12

SE [41] 70.26%± 2.89

SO [42] 71.31%± 3.21

LieNet-0Block 71.26%± 2.12

LieNet-1Block 73.35%± 1.14

LieNet-2Blocks 75.78%± 2.26

Table 2. Recognition accuracies on the HDM05 database.

catenated output Euclidean formsof theLogMap layer. The

step for MaxPooling is set to 4, and the sizes of differ-

ent FC weights are set to 307800⇥ 40000, 10000⇥4000,

1000⇥400 and 400⇥20 respectively. The performance of

this network is 85.49%, which supports the validation.

For a better understanding of the proposed LieNet, we

also visualize the output results of some representative lay-

ers. In particular, we roughly estimate the 3D location of

each body bone, given the learned rotation matrix and the

3D coordinate of the beginning edge in the torso part. In

Fig.4, we present the visualization of some layers for four

action sequences, that belong to the classes of ‘punch right’

and ‘kick left’ . As shown in Fig.4, we observe that they

yield meaningful semantic information layer by layer for

specific classes. Specifically, the reconstructions from the

first layer (RotMap) and the second layer (RotPooling) typ-

ically still mix some patterns specific for the action classes

with some rather confusing ones. But, when arriving at the

theseventh layer (LogMap), thepatterns for specific motion

classes become more discriminative.

HDM05 dataset [31]. Following [18], we conduct 10 ran-

dom evaluations, each of which randomly selects half of the

sequences for training and the rest for testing.

As listed in Table 2, besides to the two baseline methods

SE and SO, wealso study the SPDNet method [18] that has

reached the best performance so far for this dataset. The

large improvement of SE and SO over SPDNet suggests the

effectiveness of the Lie group representations for the prob-

lem of skeleton-based action recognition. As the last exper-

iment on the G3D-Gaming dataset, we also study the pro-

posed LieNet with different numbers of blocks of RotMap

and RotPooling layers. Note that since the length of each

sequence in this database is fixed to 16 frames, as studied

in the last evaluations, adding too much LieNet blocks will

lead to the loss of the temporal resolution. Thus, we im-

plemented the LieNet with 3 blocks at most for the dataset.

Asadding 3 blocks will generate 1 frame for each video, its

performance(70.42%) isnot aspromising asother cases. In

contrast, as reported in Table 2, using moreblocks (below 3

blocks) improves over using less blocks, and gets the state-

of-the-art on the dataset, again showing its advantages over

SE and SO shallow learning methods.
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