

Section 1. Problem:

Multi-view subspace clustering aims to partition a set of unla multi-source data into their underlying groups.

- > Many works prefer to learn a common representation, ignoring the complementary information between different views.
- Existing works tend to execute the subspace learning and spectral clustering in two separated steps, without consideration of the fact that these two steps highly depend on each other.

Contributions:

To overcome the above shortcomings, we propose a novel multi-view clustering algorithm namely ECMSC.

- > A novel position-aware exclusivity term is proposed to effectively exploit the complementary information between different representations.
- An indicator consistent term is employed to advocate the label consistency among the complementary representations.

Section 2. Our Method (ECMSC):

Compared to the value-aware Hilbert-Schmidt Independence Criterion (HSIC) [2], we introduce a novel *position-aware* exclusivity term, which can effectively avoid the scale issue of element values in different representations. Moreover, an indicator consistency term is proposed to unify the processing of subspace clustering.

Exclusivity-Consistency Regularized Multi-view Subspace Clustering

Xiaobo Wang^{1,2}, Xiaojie Guo^{2,3}, Zhen Lei^{1,2*}, Changqing Zhang⁴ and Stan Z. Li^{1,2} ¹CBSR&NLPR Institute of Automation, Chinese Academy of Sciences ²University of Chinese Academy of Sciences ³State Key Laboratory of Information Security, IIE, Chinese Academy of Sciences ⁴School of Computer Science and Technology, Tianjin University {xiaobo.wang,zlei,szli}@nlpr.ia.ac.cn, guoxiaojie@iie.ac.cn zhangchangqing@tju.edu.cn

Definition:

be	led

 \succ Exclusivity: Exclusivity between two matrix $\mathbf{U} \in \mathbb{R}^{n \times n}$ and $\mathbf{V} \in \mathbb{R}^{n \times n}$ is defined as $\mathcal{H}(\mathbf{U}, \mathbf{V}) = \|\mathbf{U} \odot \mathbf{V}\|_0 = \sum_{i,j} (u_{ij} \cdot v_{ij} \neq 0)$, where \odot denotes the Hadamard product (i.e., element-wise product).

Highlights:

- \succ The exclusivity term encourages two matrix **U** and **V** to be diverse. \succ The exclusivity term is position-aware. If the position (i, j) of U is not
- zero, the same position (i, j) of V is enforced to be zero.

Exclusivity-Consistency:

- Representation Exclusivity: To make the exclusivity of different representations computationally tractable, we relaxed it as: $\min_{\mathbf{Z}} \mathcal{H}(\mathbf{Z}_{v}, \mathbf{Z}_{w}) = \min_{\mathbf{Z}} \|\mathbf{Z}_{v} \odot \mathbf{Z}_{w}\|_{1}$
- Indicator Consistency: Knowing that the goal of clustering is to classify a point into only one cluster, we introduce the label consistency term as: $\min_{\mathbf{F}} \|\mathbf{Z}_{v} \odot \mathbf{\Theta}\|_{1}$

where Θ is the common indicator matrix for all the views.

The Objective Function:

To consider the exclusivity of different representations and the consistency of indicators into one framework:

$$\begin{split} \|\mathbf{E}_{v}\|_{1} + \lambda_{1} \|\mathbf{Z}_{v}\|_{1} + \lambda_{2} \underbrace{\sum_{w \neq v} \|\mathbf{Z}_{v}\|_{1}}_{\mathbf{Exclus}} \\ \min_{\mathbf{F}, \mathbf{Z}_{1}, \dots, \mathbf{Z}_{V}} \sum_{v=1}^{V} \lambda_{3} \underbrace{\|\mathbf{Z}_{v} \bigodot \mathbf{\Theta}\|_{1}}_{\mathbf{X}_{3}} \\ \lambda_{3} \underbrace{\|\mathbf{Z}_{v} \bigodot \mathbf{\Theta}\|_{1}}_{\mathbf{Consistency}} \end{split}$$

s.t. $\forall v$, $\mathbf{X}_v = \mathbf{X}_v \mathbf{Z}_v + \mathbf{E}_v$, diag $(\mathbf{Z}_v) = 0$, $\mathbf{F}^T \mathbf{F} = \mathbf{I}$ where $\theta_{ij} = \frac{1}{2} \| \mathbf{f}^i - \mathbf{f}^j \|_2^2$.

Algorithm:

- We propose a solution by solving the two sub-problems alternatively: \succ Given F, compute each exclusive representation \mathbf{Z}_{ν} and the corresponding residual \mathbf{E}_{v} by ADMM algorithm.
- \succ Given \mathbf{Z}_{v} and \mathbf{E}_{v} , find the consistent indicator **F** by spectral clustering.

 $v \odot \mathbf{Z}_{w} \|_{1} +$ sivity

Section 3. Experiments:

- algorithm will directly output the clustering results.
- Extended Yale-B Results:

	Method	NMI	ACC	ARI	F-score	Precision	Recall
	SPC _{best}	0.360 ± 0.016	$0.366 {\pm} 0.059$	$0.225 {\pm} 0.018$	0.303 ± 0.011	$0.296 {\pm} 0.010$	0.310 ± 0.012
Single	SSC _{best}	0.534 ± 0.003	0.587 ± 0.003	0.430 ± 0.005	0.487 ± 0.004	0.451 ± 0.002	0.509 ± 0.007
	S3C _{best}	0.542 ± 0.010	0.391 ± 0.012	0.415 ± 0.007	0.492 ± 0.004	0.417 ± 0.005	0.487 ± 0.009
	FeaConpca	0.152 ± 0.003	0.232 ± 0.005	0.069 ± 0.002	0.161 ± 0.002	0.158 ± 0.001	0.64 ± 0.002
	Min-Dis	0.186 ± 0.003	0.242 ± 0.018	0.088 ± 0.001	0.181 ± 0.001	0.174 ± 0.001	0.189 ± 0.002
	Co-Reg SPC	0.151 ± 0.001	0.224 ± 0.000	0.066 ± 0.001	0.160 ± 0.000	0.157 ± 0.001	0.162 ± 0.000
Multiple	ConReg SPC	0.163 ± 0.022	0.216 ± 0.019	0.072 ± 0.012	0.164 ± 0.010	0.163 ± 0.010	0.165 ± 0.011
	LT-MSC	0.637 ± 0.003	0.626 ± 0.010	0.459 ± 0.030	0.521 ± 0.006	0.485 ± 0.001	0.539 ± 0.002
	DiMSC	0.635 ± 0.002	0.615 ± 0.003	0.453 ± 0.000	0.504 ± 0.006	0.481 ± 0.002	0.534 ± 0.001
	$ECMSC_{\alpha=0}$	0.719 ± 0.011	0.692 ± 0.013	$0.492 {\pm} 0.008$	0.548 ± 0.007	0.481 ± 0.004	0.691 ± 0.006
Proposed	$ECMSC_{\beta=0}$	0.708 ± 0.009	0.678 ± 0.010	0.482 ± 0.011	0.530 ± 0.009	0.487 ± 0.004	0.672 ± 0.011
	ECMSC	0.759±0.012	$0.783{\pm}0.011$	$0.544{\pm}0.008$	$0.597{\pm}0.010$	0.513±0.009	$0.718{\pm}0.006$

> Parameters Effects:

Representation Visualization:

Code: http://www.cbsr.ia.ac.cn/users/xiaobowang/

Given a set of unlabeled data with multi-view features, the ECMSC

> Inspired by previous works [25,18], we set $\lambda_1 = \eta^{1-t}$, $\lambda_2 = \alpha$ and $\lambda_3 = \beta \eta^{t-1}$, where $\eta =$ 1.2 and $t = \{1, 2, ..., T\}$ is the iteration index. α is to control the representation exclusivity term. β is to balance the indicator consistency term.

From left to right: The columns are visualization of subspace representations \mathbf{Z}_1 , \mathbf{Z}_2 and the indicator matrix Θ .

From top to bottom: The rows are the results of $ECMSC_{\alpha=0}(ACC=0.701),$ $ECMSC_{\beta=0}(ACC=0.689)$ and ECMSC(ACC=0.781),respectively.