A Graph Regularized Deep Neural Network for Unsupervised Image Representation Learning Shijie Yang^{1,2}, Liang Li², Shuhui Wang², Weigang Zhang^{1,3}, Qingming Huang^{1,2} ¹University of Chinese Academy of Sciences, ²Institute of Computing Technology, Chinese Academy of Sciences,³ Harbin Institute of Technology

Motivation:

- Deep Auto-Encoder (DAE) has shown its promising power in high-level representation learning.
 - Fig.1(a) : DAE extracts the high-level salient factors, following a global reconstruction criterion.
- > A stream of manifold learning methods benefit from the local invariance theory.
 - Fig.1(b): It emphasizes on preserving the local geometric structure, and infer the subspace according to the affinity propagations.
- > We propose a graph regularized deep neural network (GR-DNN) to endue traditional DAEs with the ability of retaining local geometric structure.
- \succ Fig.1(c): The discriminative feature embedding is learned to
 - extract the global high-level semantic abstractions
 - preserve the geometric structure within <u>local</u> manifold tangent space

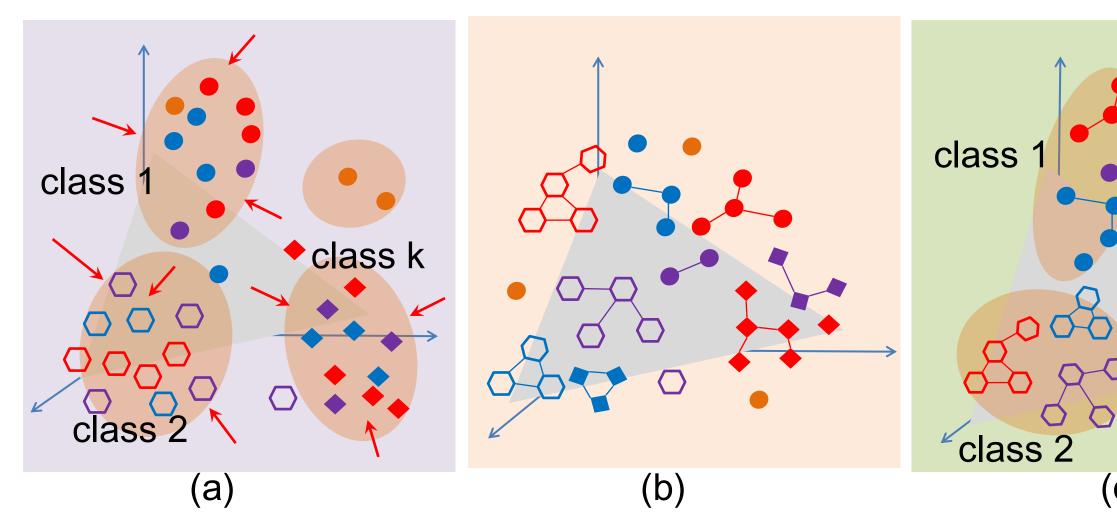


Figure 1: Toy examples of the learned 3-D embedding subspace: (a) traditional DAEs, (b) local invariance learners, (c) our GR-DNN. Different shapes denote the labels, and different colors denote the neighbor relations.

Contribution:

- > A graph regularized deep neural network is proposed to leverage DAEs with the local invariant theory.
- > The proposed deep-structured graph regularizer achieves both the lower computational complexity and superior learning performance, compared with traditional graph Laplacian regularizer.

shijie.yang@vipl.ict.ac.cn, liang.li@vipl.ict.ac.cn, wangshuhui@ict.ac.cn, wgzhang@hit.edu.cn, qmhuang@ucas.ac.cn

Methodology:

- \succ GR-DNN is composed of one encoder and two decoders (*Fig. 2(c)*) • Decoder 1: reconstruct the original input feature vectors Decoder 2: reconstruct the pre-constructed K-NN affinity graph $\mathbf{S} \in \mathbb{R}^{n \times n}$
 - (Eq. (1))

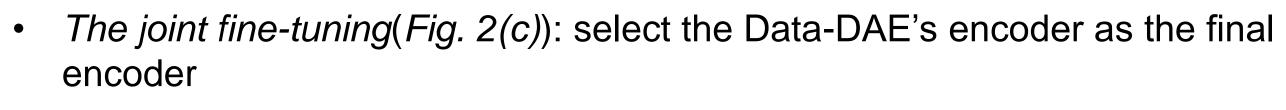
$$[\mathbf{S}]_{ij} = \begin{cases} \exp\left(\frac{-\|\mathbf{x}_i - \mathbf{x}_j\|^2}{\sigma}\right) & \text{, if } \mathbf{x}_i \text{ and} \\ 0 & \text{, otherwise} \end{cases}$$

> Objective:

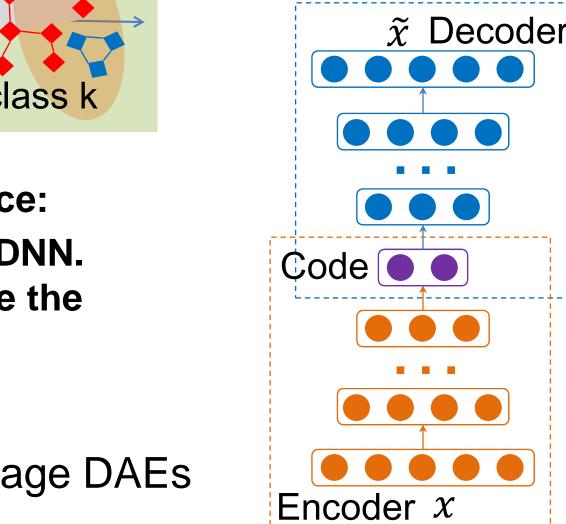
 \succ Training:

$$Cost = \Delta(\mathbf{X}, \tilde{\mathbf{X}}) + \gamma \Phi$$

traditional (regularized) DAE



- Anchor graph (AG) for large-scale data
 - Select a small set of representative anchor pe
 - Build $\mathbf{\hat{S}} \in \mathbb{R}^{n \times N_a}$ instead of $\mathbf{S} \in \mathbb{R}^{n \times n}$
 - Now we only consider $O(nN_a)$ distances



 \tilde{x} Decoder

(a) DAE

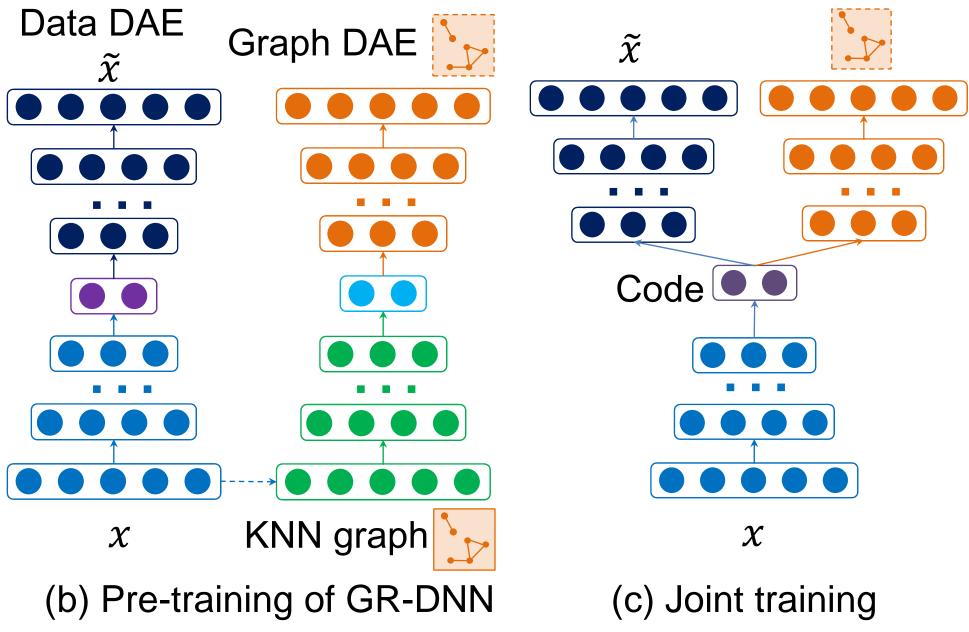


Figure 2: Illustrations of the network structures.

 \mathbf{x}_i are connected Eq. (1)

+
$$\eta \Delta(\mathbf{S}, \tilde{\mathbf{S}})$$
 Eq. (2)

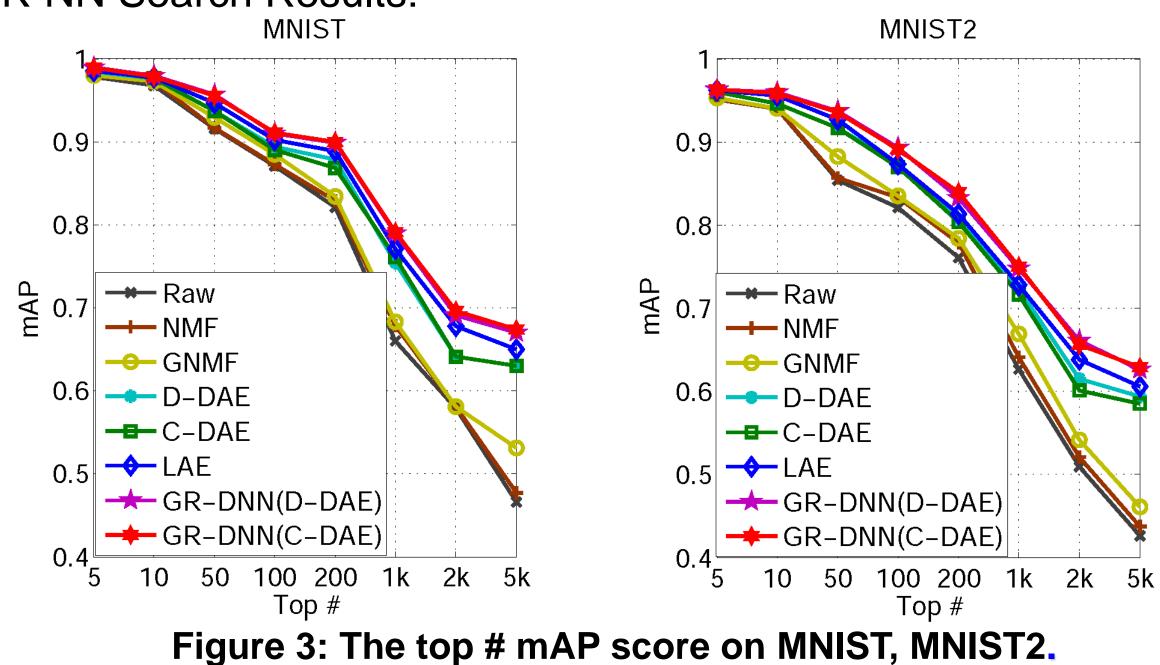
graph regularizer

• The path-wise pre-training the Data-DAE and Graph-DAE (Fig. 2(b))

points
$$\{\mathbf{a}_1, \mathbf{a}_2, ..., \mathbf{a}_{N_a}\}$$

Experiments:

- K-NN Search Results:



 \succ Visualization:

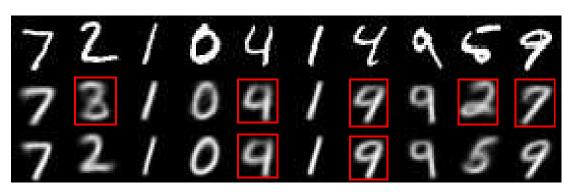


Figure 4: The top, middle and bottom panel respectively shows the original samples, the reconstructed samples by D-DAE and GR-DNN(D-DAE).

Conclusion:

- GR-DNN can enhance traditional DAEs and extract more
- extending GR-DNN to multi-view learning scenarios.

Code (Theano-based) : https://github.com/ysjakking/GR-DNN

Datasets: COIL20, YaleB face, MNIST, MNIST2(noisy MNIST) Comparison Methods: Raw, NMF, GNMF, DAE, D-DAE: Denoising-DAE, C-DAE: Contractive-DAE, LAE: Laplacian autoencoders, GR-DNN(DAE), GR-DNN(D-DAE, GR-DNN(C-DAE).

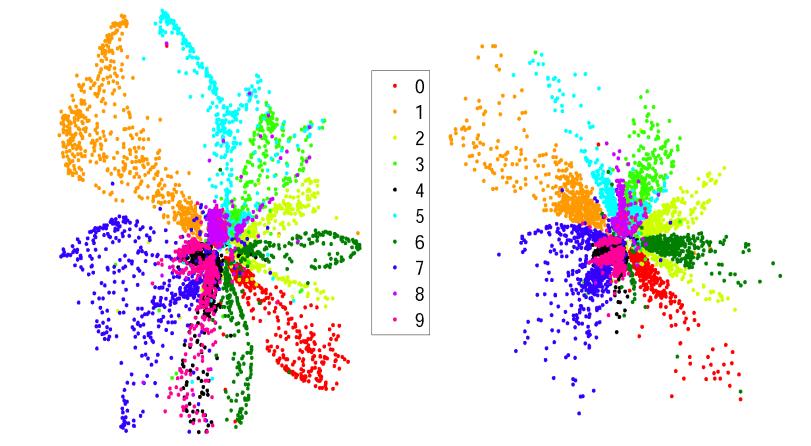


Figure 5: The left and right panel shows the 2D codes produced by D-DAE and GR-DNN(D-DAE) respectively.

discriminative features with local geometric structure preserved. Future works: learning compact hash codes for retrieval task, and