Contribution

We present a new class of higher-order Markov Random Fields (MRFs). We also design an efficient algorithm for maximum probability (MAP) inference in such models.

Introduction

Truncated convex models (TCMs) have been widely used in computer vision. In TCMs, the interaction potentials are truncated convex distances on pairs of variables:

Truncated linear distance

However, TCMs are often unable to capture useful image statistics because of the limited interactions they can represent. We present a higher-order model called truncated max-of-convex models (TMCMs) which are generalization of TCMs.

Truncated Max-of-Convex Models

Pankaj Pansari, Pawan Mudigonda University of Oxford, The Alan Turing Institute

Model

Let **X** represent the set of discrete random variables and *C* be the set of all cliques. We denote by \mathbf{x}_{c} an assignment to all variables of a clique \mathbf{x}_{c} . Also, let $\theta_{a}(x_{a})$ represent the unary potential for assigning $X_a = x_a$ and let $\theta_c(\mathbf{x}_c)$ be the clique potential.

A TMCM specifies an energy function over the labelings x as:

$$E(\mathbf{x}) = \sum_{X_a \in \mathbf{X}} \theta_a(x_a) + \sum_{c \in C} \theta_c(x_a) + \sum_{c \in C} \theta_c$$

Let $p(\mathbf{x}_{c})$ be an ascending-order sorted list of labels in $\mathbf{x}_{c'}$ and let $p_i(\mathbf{x_c})$ by its *i*-th element. Given a convex distance function d(.), a truncation factor M and an integer m, the clique potential $\theta_c(\mathbf{x_c})$ is defined as:

$$\theta_{\mathbf{c}}(\mathbf{x}_{\mathbf{c}}) = \omega_{\mathbf{c}} \sum_{i=1}^{m} \min\{d(p_i(\mathbf{x}_{\mathbf{c}}) - p_{c-i})\}$$

Variables: A, B, C, D Labels: 0-9

Let $\omega_c = 1$, m = 2, d = linear $\theta(\mathbf{x_c}) = 1. (\max(8, 7) + \max(7, 7))$ = 14

 $(\mathbf{x_c})$

 $_{i+1}(\mathbf{x_c})), M\}$

Optimization

The MAP inference problem for TMCM is:

 $\min_{\mathbf{x}\in\mathbf{L}^{N}}E(\mathbf{x})$ where **L** is the set of labels and *N* is the number of variables. This problem is *NP*-hard to solve exactly. We design a fast approximate inference algorithm based on range expansion and graph-cuts.

Results Image Inpainting & Denoising

Input Image

Baseline 1

Stereo Correspondence

Ground Truth

Baseline 1

Project page: http://www.robots.ox.ac.uk/~pankaj/tmcm/ **Email:** pankaj@robots.ox.ac.uk

Baseline 2

TMCM

Baseline 2

ТМСМ

