
Supplementary Material for COMICS:
More Details of Post-Processing and Dataset Creation

Figure 1. Two examples of panel-segmentation. On the left, we
have a typical case where the panels are perfect rectangles, which
results in perfect panel segmentation. Whereas on the right, panel
layouts are atypical (the bottom-right panel is circular, and dialog-
boxes spill over from one panel to another). Therefore, panel and
subsequent textbox segmentation could possibly contain errors.

1. Panel detection using Faster R-CNN
Panels were detected from raw comic book page scans

using Faster R-CNN 1. With regards to how we select the
number of training examples used for training the R-CNNs,
we observe that the shapes of panels (and textboxes) in our
dataset follow a long-tailed distribution, with the major-
ity of them being fairly standard (i.e., rectangular). Thus,
only 500 manual annotations were sufficient to obtain ro-
bust panel detection. We ran an experiment on a small held
out set of 20 random pages with 124 panels, and found the
mean intersection-over-union overlap between ground-truth
panel boxes and RCNN predicted boxes to be 0.911 (1.0 is
perfect overlap).

2. OCR Post-Processing and Advertisement Re-
moval

OCR makes systematic mistakes on our textboxes. We
target two types of these mistakes using PyEnchant:1 1)
where the OCR system fails to recognize the first letter of a

1http://pythonhosted.org/pyenchant/faq.html

particular word (e.g., eleportation instead of teleportation),
and 2) where the OCR system transcribes part of a word as a
single alphabetical character. To eliminate errors of the first
type, we start by tokenizing the OCR output using NLTK’s
Punkt Tokenizer.2 We then sort the vocabulary of the to-
kenized OCR output in decreasing order of frequency and
pick words ranked from 10,001 to 100,000, because most
misspelled words are also rare. For each of these words that
is length three or longer, we look up the most likely sugges-
tion offered by PyEnchant. If the only difference between
the most likely suggestion and the original word is an addi-
tional letter in the first position of the suggestion, then we
replace the word with the suggestion everywhere in our cor-
pus. To correct the second type of errors, we simply delete
all single character alphabetical tokens that are not one of
’a’, ’d’, ’i’, ’m’, ’s’, ’t’ - characters which can plausibly
occur by themselves quite frequently (some occur after an
apostrophe).

In addition to spelling errors, the books in COMICS
contain many advertisements that we need to remove be-
fore generating data for our tasks. While most dialogue
and narration boxes contain less than 30 words, longer
textboxes frequently come from full-page product adver-
tisements (e.g., Figure 2). However, detecting ads from
page images is not easy. Some ads are deceptively sim-
ilar to comic pages, containing images and even contain-
ing faux mini-comics. Aside from ads, there are also other
undesirable pages; many books contain text-only short sto-
ries in addition to comics. We remove these kinds of pages
using features from OCR transcriptions. We annotate each
page of 100 random books with a label indicating the pres-
ence or absence of an invalid page as our training set and
each page of 20 random books as our test set. Out of 6,117
annotated pages, 697 of them are either advertisements or
text-only stories (11.4%). We train a binary classifier using
Vowpal Wabbit:3 which takes the OCR text for all the pan-
els of a pages as lexical features (unigrams and bigrams).
We improve our model by adding features like total count
of words in the page and a count of non-alphanumeric char-

2http://www.nltk.org/
3https://github.com/JohnLangford/vowpal_wabbit/

wiki

1

http://pythonhosted.org/pyenchant/faq.html
http://www.nltk.org/
https://github.com/JohnLangford/vowpal_wabbit/wiki
https://github.com/JohnLangford/vowpal_wabbit/wiki


acters. Our model gives us a total misclassification error
of 8% and a false negative error of 17.3%, which means it
misses one invalid page out of every six. The model has
a negligible false positive error of 0.2%. Using this model
to filter the entire dataset of 198,657 pages yields 13,200
invalid pages.

3. Examples from Dataset Creation
OCR transcription is the final stage of our data creation

pipeline (panel extraction → textbox extraction → OCR).
Therefore, faulty outputs in any of the preceeding steps can
lead to faulty OCR outputs. In Figure 3, there are only minor
errors in OCR extraction due to understandable misinterpre-
tations of the text in the dialog boxes. For example, the
OCR interprets the letters “IC” as “K”, which leads to in-
correctly predicting the word “QUICKLY” as “QUKKLY”.
However, in Figure 4, we observe a more critical error due
to missing pixels in the panel extraction process. Due to the
layout of the textbox in the panel, crucial portions of the
text are trimmed from view; while the OCR does a valiant
job of predicting the contents of the textbox, its output is
gibberish.

2



Figure 2. An advertisement from the dataset. The juxtaposition of text and image causes it to slightly resemble a comics page.

3



Figure 3. A minor OCR error. Mistakes such as predicting “BG” for “BIG” are understandable, since the ‘I’ in “BIG” is barely visible.
Similarly, the “IC” in “QUICKLY” looks a lot like “K” in this font. Finally, “SUB STANCE” is predicted rather than “SUBSTANCE”, due
to an end-of-line word break.

Figure 4. A major OCR error. In part a) of the figure, note the location of the panel in the page. b) gives us the panel as predicted by the
RCNN, but a critical portion of the text is missing. As a consequence, the textbox extraction is also faulty, rendering the OCR completely
meaningless.

4


	. Panel detection using Faster R-CNN
	. ocr Post-Processing and Advertisement Removal
	. Examples from Dataset Creation

