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Figure 1: Overview of our crowd-sourcing pipelines. First row: Region annotation pipeline, as described in Section 2.2.
Second row: Point annotation pipeline, as described in Section 2.3.

1. Overview

In this supplementary material, we include additional de-
tails and results which could not be included in the main
paper due to space restrictions. We present:

• The SAW crowd-sourcing pipeline (Sec. 2)
• Training parameters (Sec. 3)
• Dataset statistics (Sec. 4)
• Smooth shading heatmap predictions (Sec. 5)
• Comparison of [Bell et al. 2014] [2] and [Zhou et

al. 2015] [4] intrinsic image decomposition algorithms
(Sec. 6)

• Intrinsic image decompositions with and without our
smooth shading prior (Sec. 7)

2. Crowd-sourcing Pipeline

In this section we present detailed description of all
crowd-sourcing tasks we used to collect our constant shad-
ing regions and point annotations. See Figure 1 for an
overview of our pipelines.

2.1. Glossy Annotations

Our goal is to curate a dataset that is generally useful
to tasks that use shading estimation. One specifically im-
portant task is intrinsic image decomposition. Since the
majority of intrinsic image decomposition algorithms make
a Lambertian assumption, and disregard specular surfaces,
we want to eliminate points that have a substantial glossy
component. Unfortunately, the IIW [2] dataset did not take
this into account. We address this limitation of IIW by an-
notating all old and new points in the IIW dataset with a
“glossy” label.

2.2. Region Annotation Pipeline

To collect constant shading regions, we built a four step
crowd-sourcing pipeline. First, a handful of selected work-
ers were asked to draw polygons around constant shading
regions in a scene (step 1, see Figure 2). To get higher
quality data, we also told workers that these regions have
to be opaque, non-glossy, and on a flat surface without
bumps. Further, the regions had to have a single type of
material (e.g. wood or plastic), and we did not allow fab-
rics, since they usually have wrinkles or bumps. Next, we

1



Figure 2: Region pipeline step 1: Draw regions with
constant shading. Workers were asked to draw polygons
around constant shading regions. In the example, a worker
has finished drawing the blue region (1) on the right and
drew three sides of the region on the left.

Figure 3: Region pipeline step 2: Select flat/smooth regions
that have one type of material. We collected 5 votes for
each region.

filtered these regions with 3 tasks (steps 2, 3 and 4, see Fig-
ures 3, 4, 5): (1) click on regions that are flat/smooth and
contain only one type of material (we kept these), (2) click
on regions that are glossy/transparent (we discarded these),
and (3) click on regions that have shading variation (we dis-
carded these). In each filtering task, workers were shown a
list of regions, and they had to select the ones that met the
specified criteria.

2.3. Point Annotation Pipeline

Our point annotation pipeline has five crowd-sourcing
steps. Figures 6 through 10 show illustrative examples from
each step of the pipeline. First, workers were asked to create
shading comparisons by clicking on pairs of points that have
different shading (step 1, see Figure 6). Next, we filter out

Figure 4: Region pipeline step 3: Select glossy/transparent
regions. We collected 5 votes for each region.

Figure 5: Region pipeline step 4: Select regions with shad-
ing variation. We collected 5 votes for each region.

non-opaque or glossy points through two tasks (steps 2 and
3, see Figures 7, 8). For each remaining point pair (i.e., pairs
where neither point was discarded), workers were asked
which of the two points has darker shading (step 4, see Fig-
ure 9). Finally, after generating candidate shadow boundary
points based on these comparisons, we asked workers to
choose points that are truly on sharp shadow boundaries and
not on normal/depth discontinuities (step 5, see Figure 10).

After collecting the data, we found a minor mistake in
our tutorial for the shading comparison task (step 4, see
Figure 9). The mistake was that we inverted which point
had darker pixel color in the image for an example. See
Figure 11 for this particular point pair shown in the tutorial
example. We believe this did not have a noticeable effect on
data quality, because (1) the mistake was not in comparing
shading, but in the observation of pixel colors; (2) work-
ers had to successfully pass a series of tests (sample tasks
with known ground truth) in the tutorial to start work on our
tasks; (3) we used 6 votes for each point pair.



Figure 6: Point pipeline step 1: Click on two points with
different shading. Workers were asked to create point pairs
where the first point has darker shading than the second.
The red “D” cross represents the darker shading point and
“L” cross represents the lighter shading point in the image.

Figure 7: Point pipeline step 2: Click on non-opaque points.
Workers were asked to select points that are not opaque. We
discarded these points before proceeding to the next step of
the pipeline. We collected 5 votes for each point. Candidate
points are represented with crosses.

3. Training Parameters
We used the Caffe [3] deep learning framework for our

experiments. The training parameters are the following:

• Solver: SGD.
• Learning rate: 0.001.
• Learning rate policy is “step” with step size 5000 and

gamma 0.5.
• Momentum: 0.9.
• Weight decay: 0.0005.
• Gradient accumulation: every 2 iterations (this is

Figure 8: Point pipeline step 3: Click on glossy points.
Workers were asked to select points that are glossy. We
discard such glossy points for the remainder of the pipeline.
We collected 5 votes for each point. Candidate points are
represented with crosses.

Figure 9: Point pipeline step 4: Choose which point has
darker shading. Workers were shown point pairs (shading
comparisons) and were asked to select the point with darker
shading. We collected 5 additional votes for each point pair.
The two points are represented with a red (point 1) and blue
(point 2) cross.

called iter_size in Caffe [3]).
• Final iteration: 17500.
• Class balance: 2:1:1 (S : NS-ND : NS-SB).
• Batch size: 20 images.
• Points sampled per image: 60.



Figure 10: Point pipeline step 5: Click on points that are
on a shadow boundary. We generate candidate shadow
boundary points based on image gradients between valid
non-equal shading point pairs. Workers were asked to select
points that are on a sharp shadow boundary. We collected 5
votes for each point. Candidate points are represented with
crosses.

Figure 11: The corrected tutorial example.
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Figure 12: Probability-color mapping for heatmaps. The
heatmaps themselves are on the next few pages.

4. Dataset Statistics
In this section, we present additional statistics about our

dataset. In Figure 13-(a) we show a joint plot of the log
average color gradient magnitude over each constant shad-
ing region and the log normalized area (1 means that the
region covers the entire image). The gradient magnitude is
correlated with how textured the region is. Textured regions
are valuable because constant shading cannot be easily pre-
dicted based on simple pixel intensity measurements.

As Figure 13-(b) shows, most images have 0-4 constant
shading regions. This is expected, because constant shading
is not very common in arbitrary indoor images.

Finally, based on the statistics of shadow boundary
points (see Figure 13-(c)), we can say that the majority of
images have 0-5 shadow boundary points. Similarly to con-
stant shading, sharp shadow boundaries are relatively rare
in images.

On the other hand, the variety of the annotations is more
important than having many redundant annotations in a
few images. Our dataset contains 15,407 shadow boundary
points and 23,947 constant shading regions over thousands
of photos.

5. Smooth Shading Heatmap Predictions
We show 204 examples of smooth shading heatmap pre-

dictions randomly sampled from the test set below. See Fig-
ure 12 for the probability-color mapping for all heatmaps.
We release the full set of predictions online along with our
trained model.
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Figure 13: (a) Joint plot of the log average color gradient magnitude over each constant shading region and the log normalized
area (1 means that the region covers the entire image). (b) Histogram of percentage of image area covered per photo (top)
and number of constant shading regions per photo (bottom). (c) Statistics of shadow boundary points.
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Figure 14: Connection between our smooth shading pre-
dictions and normal predictions of [1]. (a) Input image.
(b) Normals predicted by [1]. Note the incorrectly pre-
dicted wall edge at the right of the image (indicated by
green arrow). (c) Smooth shading heatmap predicted by our
method. Note the smooth shading bleeding over a normal
discontinuity at the same area where the normal prediction
was incorrect.

5.1. Heatmap Discussion

Most predicted smooth shading regions are reasonably
good with high precision. However, our network sometimes
makes mistakes. For example, predictions may “bleed over”
normal or depth discontinuities as shown in Figure 14-(c).
To understand this behavior, we dug deeper into the predic-
tion of the normals from Bansal et al. [1], whose network
we fine-tuned. We find that indeed the original network of-
ten incorrectly predicts normals in such cases (Figure 14-
(b)), and this error propagates through to our network as
well. Future improvements in normal prediction can im-
prove our heat map predictions, though this is orthogonal to
our current submission.

Another occasional mistake is when the normal predic-
tion misses thin structures. This might occur because we
we resize the input images to a relatively low resolution
(224 × 224). These problems can be mitigated in future
work with fully convolutional training on higher resolution
inputs.

6. [Zhou et al. 2015] vs. [Bell et al. 2014]
In Section 5.2 of the paper we show that the baseline

based on [Bell et al. 2014] outperforms the baseline from
[Zhou et al. 2015] on the task of predicting smooth shading
pixels. Even though the decomposed reflectance layers of
[Zhou et al. 2015] are higher quality than [Bell et al. 2014]
based on the WHDR metric, [Zhou et al. 2015] makes cer-
tain mistakes in the shading layer which [Bell et al. 2014]
does not, and consequently Zhou et al. [4] performs worse
in our smooth shading prediction experiment. We further
demonstrate this by showing decompositions of both algo-
rithms on 20 randomly picked images below (to avoid bias).
For each image, we point out the most important differ-
ences with green arrows. In two cases, we deemed [Zhou et
al. 2015]’s shading layer to be better than [Bell et al. 2014]
and showed the mistakes of [Bell et al. 2014] with red ar-
rows. Generally, the shading channel of [Zhou et al. 2015]

is too high contrast in many cases and follows image in-
tensities. However, a typical case where [Zhou et al. 2015]
performs better is at depth discontinuities or shadows on
surfaces with constant reflectance thanks to the learned re-
flectance prior. An exciting future research direction is to
take into account both reflectance and shading errors to fur-
ther improve Zhou et al.’s algorithm.
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(a) Input (b) R [Bell et al. 2014] (c) S [Bell et al. 2014] (d) R [Zhou et al. 2015] (e) S [Zhou et al. 2015]
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7. Intrinsic Images Decompositions with and
without Our Smooth Shading Prior

7.1. Quantitative Evaluation

We generated the PR curves for the two algorithms we
used in Figure 8 of the paper on the whole test set (see Fig-
ure 15). We can see that the smooth-shading prior helps the
algorithm to achieve better shading decomposition perfor-
mance. Note that we did not choose the optimal t threshold
using cross-validation; therefore, the results of these two
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Figure 15: PR curves over all test images of our simple
Retinex implementation with and without smooth-shading
prior. We can see that the smooth-shading prior improves
the shading decomposition performance.

decomposition algorithms are inferior to the results of base-
line algorithms presented in the paper.

7.2. Qualitative Evaluation

We show intrinsic image decompositions with our
smooth shading prior for 20 photos from the test set below.
We also show 3 failure cases in Figure 16. These prelimi-
nary results show improvement in many cases and that our
method is a promising new way to think about the intrin-
sic images problem. However, more work has to be done
to incorporate our prior into state-of-the-art intrinsic image
algorithms.
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Figure 16: Failure cases. In some cases, our algorithm predicts smooth shading incorrectly and this leads to incorrect intrinsic
image decompositions. The mistakes for each row are as follows: First row: We predict that the window shade region has
smooth shading. Second row: The bookshelf has normal discontinuities and should not be predicted as smooth shading.
Third row: The normal discontinuity of the door-frames on the left and right is ignored.


