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Theorem 1. Let {B(t)} be generated by the update rule
of Algorithm 1, then {f(B(t))} is monotonically non-
increasing, i.e., f(B(t+1)) ≤ f(B(t)), and {B(t)} con-
verges.

Proof. According to the linearization f̂t(B) = f(B(t)) +

〈∇f(B(t)),B − B(t)〉, we can observe that f̂t(B
(t)) =

f(B(t)) and we have

f̂t(B
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(t)) = 〈∇f(B(t)),B(t+1) −B(t)〉
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For each term in the above summation,〈
∇p,qf(B

(t)),
(
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)
p,q
−
(
B(t)

)
p,q

〉
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only if ∇p,qf(B
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(
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)
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(
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)
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There are several cases for ∇p,qf(B
(t)) and(

B(t+1)
)
p,q
−
(
B(t)

)
p,q

. If ∇p,qf(B
(t)) = 0 for all

p, q, then f(B(t)) is the local minimum value and there is
no further update iteration.

Let us consider the case that there exist p, q such
that ∇p,qf(B

(t)) 6= 0. If
(
B(t+1)

)
p,q
−
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)
p,q

=

0, then 〈∇p,qf(B
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If
(
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)
p,q
−
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)
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6= 0, i.e.,

(
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)
p,q

=

−
(
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)
p,q

, according to the update rule,

(
B(t+1)

)
p,q

= sign(−∇p,qf(B
(t))).

In this case,
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(
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)
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= 〈∇p,qf(B
(t)), 2 sign(−∇p,qf(B

(t)))〉
< 0.

(1)

Therefore, if f(B(t)) is not a local minimum value, we
have

f̂t(B
(t+1))− f̂t(B

(t)) = 〈∇f(B(t)),B(t+1) −B(t)〉 < 0

which means f̂t(B(t+1)) < f̂t(B
(t)) for any variable S 6= ∅

in the update rule of B(t).
If f(B(t+1)) is already less than f(B(t)), then f

is monotonically decreasing by the update rule. If
f(B(t+1)) > f(B(t)), then we prove that there exists S
such that B(t+1) = F(sign(−∇f(B(t))),B(t), S) satisfies
f(B(t+1)) ≤ f(B(t)), where matrix function F(M,N, S)
is defined as

(F(M,N, S))p,q =

{
Mp,q if (p, q) ∈ S,
Np,q otherwise,

with S ⊆ {(p, q)|Mp,q 6= Np,q,Mp,q 6= 0} and the size of
S is controlled by a parameter ϕ. Then we have

f(B(t)) = f̂t(B
(t)) = f̂t(F(sign(−∇f(B(t))),B(t), ∅))

> f̂t(F(sign(−∇f(B(t))),B(t), S)) = f̂t(B
(t+1))

for any S 6= ∅. In this way, we try to find a small neigh-
borhood of B(t), on which f̂t(B) can approximately repre-
sent f(B). Considering the variable S with |S| = 1 (i.e.,
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ϕ = 1
nm ), the following set:

N1 =
{
F(sign(−∇f(B(t))),B(t), S)

∣∣∣
S ⊆

{
(p, q)|

(
sign(−∇f(B(t)))

)
p,q
6=
(
B(t)

)
p,q

and
(
sign(−∇f(B(t)))

)
p,q
6= 0
}}

contains all the neighbor binary points of B(t) in the de-
scending direction.

If ∃ B1 ∈ N1 such that f(B1) ≤ f̂t(B1), we have
f(B1) ≤ f̂t(B1) < f̂t(B

(t)) = f(B(t)). Then there ex-
ists S such that f(B(t+1)) ≤ f(B(t)).

If ∃B1 ∈ N1 such that |f(B1)− f̂t(B1)| ≤ f̂t(B
(t))−

f̂t(B1), we have f(B1) − f̂t(B1) ≤ f̂t(B
(t)) − f̂t(B1),

which leads to f(B1) ≤ f̂t(B
(t)) = f(B(t)). Then there

exists S such that f(B(t+1)) ≤ f(B(t)).
If ∀ B ∈ N1 we have f(B) > f̂t(B) and |f(B) −

f̂t(B)| > f̂t(B
(t)) − f̂t(B), then f(B) > f̂t(B

(t)) =
f(B(t)), ∀ B ∈ N1. In this condition, the function value
on every neighbor binary point of B(t) in the descending
direction is larger than f(B(t)), which renders f(B(t)) is a
local minimum value for the domain {±1}m×n.

Therefore, {f(B(t))} is monotonically non-increasing.
Since {±1}m×n is a finite set and f is a bounded function
(f ≥ 0), {B(t)} will converge under the above-defined up-
date rule.
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