Supplementary for Discretely Coding Semantic Rank Orders for Supervised Image Hashing

Li Liu¹, Ling Shao¹, Fumin Shen², and Mengyang Yu³

¹School of Computing Science, University of East Anglia, UK ²Center for Future Media, University of Electronic Science and Technology of China, China ³Computer Vision Laboratory, ETH Zurich, Switzerland

{li.liu, ling.shao}@uea.ac.uk, fumin.shen@gmail.com, mengyangyu@gmail.com

Theorem 1. Let $\{\mathbf{B}^{(t)}\}$ be generated by the update rule of Algorithm 1, then $\{f(\mathbf{B}^{(t)})\}$ is monotonically non-increasing, i.e., $f(\mathbf{B}^{(t+1)}) \leq f(\mathbf{B}^{(t)})$, and $\{\mathbf{B}^{(t)}\}$ converges.

Proof. According to the linearization $\hat{f}_t(\mathbf{B}) = f(\mathbf{B}^{(t)}) + \langle \nabla f(\mathbf{B}^{(t)}), \mathbf{B} - \mathbf{B}^{(t)} \rangle$, we can observe that $\hat{f}_t(\mathbf{B}^{(t)}) = f(\mathbf{B}^{(t)})$ and we have

$$\hat{f}_t(\mathbf{B}^{(t+1)}) - \hat{f}_t(\mathbf{B}^{(t)}) = \langle \nabla f(\mathbf{B}^{(t)}), \mathbf{B}^{(t+1)} - \mathbf{B}^{(t)} \rangle$$
$$= \sum_{p,q} \left\langle \nabla_{p,q} f(\mathbf{B}^{(t)}), \left(\mathbf{B}^{(t+1)}\right)_{p,q} - \left(\mathbf{B}^{(t)}\right)_{p,q} \right\rangle.$$

For each term in the above summation, $\left\langle \nabla_{p,q} f(\mathbf{B}^{(t)}), \left(\mathbf{B}^{(t+1)}\right)_{p,q} - \left(\mathbf{B}^{(t)}\right)_{p,q} \right\rangle \neq 0$ if and only if $\nabla_{p,q} f(\mathbf{B}^{(t)}) \neq 0$ and $\left(\mathbf{B}^{(t+1)}\right)_{p,q} - \left(\mathbf{B}^{(t)}\right)_{p,q} \neq 0$.

There are several cases for $\nabla_{p,q} f(\mathbf{B}^{(t)})$ and $(\mathbf{B}^{(t+1)})_{p,q} - (\mathbf{B}^{(t)})_{p,q}$. If $\nabla_{p,q} f(\mathbf{B}^{(t)}) = 0$ for all p, q, then $f(\mathbf{B}^{(t)})$ is the local minimum value and there is no further update iteration.

Let us consider the case that there exist p, q such that $\nabla_{p,q} f(\mathbf{B}^{(t)}) \neq 0$. If $(\mathbf{B}^{(t+1)})_{p,q} - (\mathbf{B}^{(t)})_{p,q} = 0$, then $\langle \nabla_{p,q} f(\mathbf{B}^{(t)}), (\mathbf{B}^{(t+1)})_{p,q} - (\mathbf{B}^{(t)})_{p,q} \rangle = 0$. If $(\mathbf{B}^{(t+1)})_{p,q} - (\mathbf{B}^{(t)})_{p,q} \neq 0$, i.e., $(\mathbf{B}^{(t+1)})_{p,q} = -(\mathbf{B}^{(t)})_{p,q}$, according to the update rule,

$$\left(\mathbf{B}^{(t+1)}\right)_{p,q} = \operatorname{sign}(-\nabla_{p,q}f(\mathbf{B}^{(t)})).$$

In this case,

$$\langle \nabla_{p,q} f(\mathbf{B}^{(t)}), \left(\mathbf{B}^{(t+1)}\right)_{p,q} - \left(\mathbf{B}^{(t)}\right)_{p,q} \rangle$$

$$= \langle \nabla_{p,q} f(\mathbf{B}^{(t)}), \left(\mathbf{B}^{(t+1)}\right)_{p,q} + \left(\mathbf{B}^{(t+1)}\right)_{p,q} \rangle$$
(1)
$$= \langle \nabla_{p,q} f(\mathbf{B}^{(t)}), 2\operatorname{sign}(-\nabla_{p,q} f(\mathbf{B}^{(t)})) \rangle$$

$$< 0.$$

Therefore, if $f(\mathbf{B}^{(t)})$ is not a local minimum value, we have

$$\hat{f}_t(\mathbf{B}^{(t+1)}) - \hat{f}_t(\mathbf{B}^{(t)}) = \langle \nabla f(\mathbf{B}^{(t)}), \mathbf{B}^{(t+1)} - \mathbf{B}^{(t)} \rangle < 0$$

which means $\hat{f}_t(\mathbf{B}^{(t+1)}) < \hat{f}_t(\mathbf{B}^{(t)})$ for any variable $S \neq \emptyset$ in the update rule of $\mathbf{B}^{(t)}$.

If $f(\mathbf{B}^{(t+1)})$ is already less than $f(\mathbf{B}^{(t)})$, then f is monotonically decreasing by the update rule. If $f(\mathbf{B}^{(t+1)}) > f(\mathbf{B}^{(t)})$, then we prove that there exists S such that $\mathbf{B}^{(t+1)} = \mathcal{F}(\text{sign}(-\nabla f(\mathbf{B}^{(t)})), \mathbf{B}^{(t)}, S)$ satisfies $f(\mathbf{B}^{(t+1)}) \leq f(\mathbf{B}^{(t)})$, where matrix function $\mathcal{F}(\mathbf{M}, \mathbf{N}, S)$ is defined as

$$\left(\mathcal{F}(\mathbf{M}, \mathbf{N}, S)\right)_{p,q} = \begin{cases} \mathbf{M}_{p,q} & \text{if } (p,q) \in S, \\ \mathbf{N}_{p,q} & \text{otherwise,} \end{cases}$$

with $S \subseteq \{(p,q) | \mathbf{M}_{p,q} \neq \mathbf{N}_{p,q}, \mathbf{M}_{p,q} \neq 0\}$ and the size of S is controlled by a parameter φ . Then we have

. . .

$$f(\mathbf{B}^{(t)}) = \hat{f}_t(\mathbf{B}^{(t)}) = \hat{f}_t(\mathcal{F}(\operatorname{sign}(-\nabla f(\mathbf{B}^{(t)})), \mathbf{B}^{(t)}, \emptyset))$$

> $\hat{f}_t(\mathcal{F}(\operatorname{sign}(-\nabla f(\mathbf{B}^{(t)})), \mathbf{B}^{(t)}, S)) = \hat{f}_t(\mathbf{B}^{(t+1)})$

for any $S \neq \emptyset$. In this way, we try to find a small neighborhood of $\mathbf{B}^{(t)}$, on which $\hat{f}_t(\mathbf{B})$ can approximately represent $f(\mathbf{B})$. Considering the variable S with |S| = 1 (i.e.,

 $\varphi = \frac{1}{nm}$), the following set:

$$\begin{split} \mathcal{N}_1 &= \left\{ \mathcal{F}(\operatorname{sign}(-\nabla f(\mathbf{B}^{(t)})), \mathbf{B}^{(t)}, S) \middle| \\ S &\subseteq \left\{ (p, q) | \left(\operatorname{sign}(-\nabla f(\mathbf{B}^{(t)})) \right)_{p, q} \neq \left(\mathbf{B}^{(t)} \right)_{p, q} \right. \\ & \text{ and } \left(\operatorname{sign}(-\nabla f(\mathbf{B}^{(t)})) \right)_{p, q} \neq 0 \right\} \right\} \end{split}$$

contains all the neighbor binary points of $\mathbf{B}^{(t)}$ in the descending direction.

If $\exists \mathbf{B}_1 \in \mathcal{N}_1$ such that $f(\mathbf{B}_1) \leq \hat{f}_t(\mathbf{B}_1)$, we have $f(\mathbf{B}_1) \leq \hat{f}_t(\mathbf{B}_1) < \hat{f}_t(\mathbf{B}^{(t)}) = f(\mathbf{B}^{(t)})$. Then there exists S such that $f(\mathbf{B}^{(t+1)}) \leq f(\mathbf{B}^{(t)})$.

If $\exists \mathbf{B}_1 \in \mathcal{N}_1$ such that $|f(\mathbf{B}_1) - \hat{f}_t(\mathbf{B}_1)| \leq \hat{f}_t(\mathbf{B}^{(t)}) - \hat{f}_t(\mathbf{B}_1)$, we have $f(\mathbf{B}_1) - \hat{f}_t(\mathbf{B}_1) \leq \hat{f}_t(\mathbf{B}^{(t)}) - \hat{f}_t(\mathbf{B}_1)$, which leads to $f(\mathbf{B}_1) \leq \hat{f}_t(\mathbf{B}^{(t)}) = f(\mathbf{B}^{(t)})$. Then there exists S such that $f(\mathbf{B}^{(t+1)}) \leq f(\mathbf{B}^{(t)})$.

If $\forall \mathbf{B} \in \mathcal{N}_1$ we have $f(\mathbf{B}) > \hat{f}_t(\mathbf{B})$ and $|f(\mathbf{B}) - \hat{f}_t(\mathbf{B})| > \hat{f}_t(\mathbf{B}^{(t)}) - \hat{f}_t(\mathbf{B})$, then $f(\mathbf{B}) > \hat{f}_t(\mathbf{B}^{(t)}) = f(\mathbf{B}^{(t)}), \forall \mathbf{B} \in \mathcal{N}_1$. In this condition, the function value on every neighbor binary point of $\mathbf{B}^{(t)}$ in the descending direction is larger than $f(\mathbf{B}^{(t)})$, which renders $f(\mathbf{B}^{(t)})$ is a local minimum value for the domain $\{\pm 1\}^{m \times n}$.

Therefore, $\{f(\mathbf{B}^{(t)})\}$ is monotonically non-increasing. Since $\{\pm 1\}^{m \times n}$ is a finite set and f is a bounded function $(f \ge 0), \{\mathbf{B}^{(t)}\}$ will converge under the above-defined update rule.