
O1 O2 S1 S2 F1 F2

input 3× 227× 227 input 3× 227× 227 input 3× 152× 152

conv[11, 96, 4, 0] conv[11, 64, 4, 0] conv[11, 96, 4, 0] conv[11, 64, 4, 0] conv[3, 64, 2, 1]
pool[3, 2] pool[3, 2] pool[2, 2]

conv[5, 256, 2, 2] conv[5, 256, 2, 2] conv[3, 128, 1, 1] conv[3, 128, 2, 1]
pool[3, 2] pool[3, 2] pool[2, 2]

conv[3, 384, 1, 1] conv[3, 256, 1, 1] conv[3, 384, 1, 1] conv[3, 256, 1, 1] conv[3, 256, 1, 1] conv[3, 128, 2, 1]
conv[3, 384, 1, 1] conv[3, 256, 1, 1] conv[3, 384, 1, 1] conv[3, 256, 1, 1] pool[2, 2]
conv[3, 256, 1, 1] conv[3, 256, 1, 1] conv[3, 256, 1, 1] conv[3, 256, 2, 1]

pool[3, 2] pool[3, 2] pool[2, 2]
fc[4096] fc[1024] fc[2048] fc[1024] fc[2048] fc[1024]
fc[4096] fc[2048] fc[2048] fc[2048] fc[2048] fc[1024]

fc[1000] fc[205] fc[2622]

Table 1: Architecture of compact models O1, O2, S1, S2, F1, and F2. The table specifies convolution layers as [kernel
size, number of feature maps, stride, padding]; max-pooling layers as [kernel size, stride]; fully-connected layers as
[output size].

A Generating Compact Models
Table 1 shows the six compact models used in the paper. We created these models by systematically applying the
following operations to publicly available model architecture, such as AlexNet [3] and VGGNet [4]: (a) reduce the
number of feature maps, or increase stride size in a convolution layer; (b) reduce the size of a fully-connected layer;
(c) merge two convolution layers or a convolution layer and a max-pooling layer into a single layer. The models
are unremarkable except that they have fewer operations and layers than original versions and hence run faster, yet
achieve high accuracy when applied to small subsets of the original model’s domain. In fact, how these architectures
are derived is orthogonal to the WEG algorithm. We have tested two fully automatic approximation techniques, tensor
factorization [2] and representation quantization [1] to generate compact models as well.

B Dominant classes
In the WEG algorithm, an important component is to decide the dominant classes from a sliding window (function
DOMCLASSES in Algorithm 1). The decision used in the algorithm is fairly simple: return the classes as dominant
classes that appear at least k times in a sliding window w of classification result history from the oracle h∗, where k is
the minimum support number.

Here we use a simple model to analyze how to choose the minimum support number k for different window sizes
w in the WEG algorithm. Suppose N is the number of total classes classified by the oracle h∗ and the accuracy of
h∗ is a∗. If the classification result from the oracle is wrong, the probability that the oracle classifies the input to
each of the other classes is assumed to be equivalent. Suppose the input sequences are drawn independently from a
skewed distribution T which has n dominant classes with skew p. Denote the set of dominant classes as D and set of
non-dominant set as O. Based on these definitions, we can compute the probability of a single class that the oracle
classifier h∗ outputs given the input sequences. Consider one dominant class ` ∈ D, the probability that it is output by
the oracle is:

prob(` ∈ D) = 1
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And the probability of a non-dominant class `′ ∈ O that is output by the oracle is:

prob(`′ ∈ O) = 1
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index N a∗ n p w k pin pout

1 1000 0.68 5 0.9 30 2 0.896 6.52E-5
2 1000 0.68 10 0.9 30 2 0.558 6.53E-5
3 1000 0.68 10 0.9 60 2 0.891 2.64E-4
4 1000 0.68 10 0.7 60 2 0.789 4.80E-4
5 1000 0.68 10 0.7 90 2 0.933 1.08E-3
6 205 0.58 10 0.9 90 2 0.959 0.019
7 205 0.58 10 0.9 90 3 0.872 1.31E-3
8 205 0.58 0 N/A 90 3 N/A 9.29E-3

Table 2: Probability pin and pout under various N, a∗, n, p and w, k. In row 8, n = 0 and p = N/A indicates that the
distribution has no skew and is uniform across all N classes.

From Equation 1 and 2, we can then derive the probability of a dominant class or a non-dominant class that is
classified at least k times in the window w by using binomial distribution. Intuitively, we hope the probability of a
dominant class that appear at least k times (pin) in the window be as high as possible, while the probability of any
non-dominant class (pout) be as low as possible. We considered different combinations of N, a∗, n, p under different w
and k settings, and computed pin and pout. Table 2 shows how pin and pout changes under different settings. From the
table, we can tell that with an increase in the number of dominant classes and a decrease in skew, we need to increase
the size of window to have a higher probability that the dominant classes can be detected in the window. However,
when the window size is larger, we also need to increase the minimum support number k (Row 6 and 7) to limit the
probability that a non-dominant class appears k times. In addition, when there is no skew in the distribution (Row 8),
the minimum support number k is also effective at filtering out most of the non-dominant classes. In practice, we set
k = 2 for w < 90 and k = 3 for w ≥ 90.
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