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This supplementary document contains some technical
material not included in the main body of the paper, and
presents the algorithms for SfM and self-calibration for
two-slit cameras.

1. Calculations with Plücker coordinates
Let π be a plane in P3. We consider a reference frame

(π) on π described by a 4 × 3 matrix Y = [y1,y2,y3].
The map N : Gr(1, 3) 99K P2 associating any line l not on
π with the coordinates of the point y = π ∧ l for (π) is
described by the 3× 6 matrix

N =

(y2 ∨ y3)
∗T

(y3 ∨ y1)
∗T

(y1 ∨ y2)
∗T

 . (1)

Indeed, this is the only linear map Gr(1, 3) 99K P2 such
that N(y1 ∨ z) = (1, 0, 0)T , N(y2 ∨ z) = (0, 1, 0)T ,
N(y3∨z) = (0, 0, 1)T ,N((y1+y2+y3)∨z) = (1, 1, 1)T

for all z not in π.
Let us now consider two “slits” l1, l2, that we represent

using dual Plücker matrices P ∗1,P
∗
2. The action of the cor-

responding essential camera x 7→ λL(x) can be written as

x 7→ l = (l1 ∨x)∧ (l2 ∨x) = P ∗1xxTP ∗2 −P ∗2xxTP ∗1, (2)

where l = λL(x) is given as a dual Plücker matrix. Writing
S1,S

∗
1,S2,S

∗
2,S3,S

∗
3 for the primal and dual Plücker ma-

trices for y2 ∨y3,y3 ∨y1,y1 ∨y2 respectively, and L,L∗

for the primal and dual Plücker matrices of l = λL(x), we
have

λL(x) ∧ π = Y Nl = Y

tr(S∗1L)tr(S∗2L)
tr(S∗3L)

 = Y

tr(S1L
∗)

tr(S2L
∗)

tr(S3L
∗)


= Y

tr(S1P
∗
2xx

TP ∗1)
tr(S2P

∗
2xx

TP ∗1)
tr(S3P

∗
2xx

TP ∗1)

 = Y

xTP ∗1S1P
∗
2x

xTP ∗1S2P
∗
2x

xTP ∗1S3P
∗
2x

 ,
(3)

where equality is written up to scale, and we have used the
fact that tr(AB) = tr(BA) = tr(ATBT ) = tr(BTAT )

for any matrices A,B. Hence, we recover the expression
for a general two-slit camera, already noted in [1, 6]:

x 7→ u =

xTP ∗1S1P
∗
2x

xTP ∗1S2P
∗
2x

xTP ∗1S3P
∗
2x

 . (4)

If we choose an “intrinsic” reference frame, so that y1 =
l2∧π and y2 = l1∧π, or equivalentlyP ∗1y2 = P ∗2y1 = 0,
the two-slit projection (4) reduces to

x 7→ u =

xTP ∗1(y2y
T
3 − y3y

T
2 )P

∗
2x

xTP ∗1(y3y
T
1 − y1y

T
3 )P

∗
2x

xTP ∗1(y1y
T
2 − y2y

T
1 )P

∗
2x


=

−xTP ∗1y3y
T
2 P
∗
2x

−xTP ∗1y1y
T
3 P
∗
2x

xTP ∗1y1y
T
2 P
∗
2x


=

(pT
1 x) (q

T
2 x)

(pT
2 x) (q

T
1 x)

(pT
2 x) (q

T
2 x)

 ,
(5)

where p1 = P ∗1y3 = (l1 ∨ y3), p2 = −P ∗1y1 = −(l1 ∨
y1), q1 = P ∗2y3 = (l2∨y3), q2 = −P ∗2y2 = −(l2∨y2).
Finally, combining (2) and (5), we also obtain an expression
for the inverse line projection χ : P2 99K Gr(1, 3):

u 7→ λL(Y u) = P
∗
1Y uu

TY TP ∗2 − P ∗2Y uuTY TP ∗1

= [−p2,0,p1]uu
T [0,−q2, q1]− [0,−q2, q1]uu

T [−p2,0,p1]

= u1u2(p2 ∧ q2)− u1u3(p2 ∧ q1)− u2u3(p1 ∧ q2) + u2
3(p1 ∧ q1).

(6)

2. Proofs
Lemma 1. Let l1, l2 be two skew lines in P3. For any point
x not on the these lines, we indicate with λ(x) the unique
transversal to l1, l2 passing through x. If π and π′ are two
planes intersecting at a line δ that meets l1 and l2, then the
map f : π 99K π′ defined, for points y not on δ, as

f(y) = λ(y) ∧ π′, (7)

can be extended to a homography between π and π′.



Proof. Let us fix a coordinate system (π) on π given by
Y = [y1,y2,y3]. Up to composing with a projective trans-
formation, we may assume that y1 = l2 ∧ π and y2 =
l1∧π. It is also convenient to define p1,p2, q1, q2 as in the
previous section, namely p1 = (l1 ∨y3), p2 = −(l1 ∨y1),
q1 = (l2 ∨ y3), q2 = −(l2 ∨ y2). The map λ(y) can now
be written as y = Y u 7→ χ(u) where χ is given in (6). In
particular, since δ = p2 ∧ q2 = y1 ∨ y2 lies on π′, we can
describe f(y) as

y = Y u 7→ χ(u) ∧ π′

= −u1u3(p2 ∧ q1 ∧ π
′)− u2u3(p1 ∧ q2 ∧ π

′) + u2
3(p1 ∧ q1 ∧ π

′)

= u1y
′
1 + u2y

′
2 + u3y

′
3,

(8)
where y′1 = −(p2∧q1∧π′), y′2 = −(p1∧q2∧π′), y′3 =
(p1 ∧ q1 ∧ π′). Fixing Y ′ = [y′1,y

′
2,y
′
3] as a reference

frame on π′, the map (7) corresponds to the identity on P2.
Hence, it can be extended to points y on δ (where u3 = 0),
and it is a homography.

We also give a sketch for a more “geometric” argument:
we need to show that the a (generic) linem on π is mapped
by (7) to a line on π′. If m does not intersect l1 or l2, the
union of the common transversals to l1, l2,m (that are the
lines in λL(m)) is a quadric in P3. The intersection of this
quadric with π′ will have degree two, however it contains
the transversal line δ, and hence it is reducible. Since δ does
not belong to the image of (7), we deduce that (the closure
of) image ofm is a line in π′.

Proposition 1. IfA1,A2 describe a parallel two-slit cam-
era, then we can uniquely write

A1 =K1

[
rT1 t1
rT3 t3

]
, A2 =K2

[
rT2 t2
rT3 t4

]
, (9)

whereK1 andK2 are upper-triangular 2× 2 matrices de-
fined up to scale with positive elements along the diagonal,
and r1, r2, r3 are unit vectors, with r3 orthogonal to both
r1, r2. Here, θ = arccos(r1 · r2) is the angle between the
slits, and |t4 − t3| is the distance between the slits. More-
over, if the matricesK1 andK2 are written as

K1 =

[
fu u0

0 1

]
,K2 =

[
2fv v0
0 1

]
, (10)

then fu, fv can be interpreted as “magnifications” in the u
and v directions, and (u0, v0) as the position of the “prin-
cipal point”.

Proof. The decomposition exists and is unique because of
RQ-decomposition of matrices [2, Theorem 5.2.3]. More
precisely, if we write A1 = [M1 | t1], A2 = [M2 | t2],
where M1,M2 are 2 × 3, then K1, K2 are the (normal-
ized) upper triangular matrices in the RQ decomposition for
M1,M2 respectively.

We next observe that for a pair canonical matrices

A1 =

[
1 0 0 0
0 0 1 0

]
, A2 =

[
2 cos θ 2 sin θ 0 0

0 0 1 d

]
,

(11)
the corresponding euclidean orbit is of the form[

rT1 t1
rT3 t3

]
,

[
2rT2 2t2
rT3 t3 + d

]
, (12)

where θ = arccos(r1 · r2) (this follows by applying a
4× 4 euclidean transformation matrix to (11)). These cam-
eras decompose with K1 being the identity and K2 =
diag(2, 1).

Finally, if we indicate with p1,p2 and 2q1, q2 the rows
of (12), so that the corresponding camera can be written as
x 7→ u = (pT1 x/p

T
2 x, 2q

T
1 x/q

T
2 x, 1), then the compo-

sition of
[
pT1
pT2

]
,
[
qT1
qT2

]
with K1,K2 as in (10) yields the

camera

x 7→
(
fu
pT
1 x

pT
2 x

+ u0, fv
2qT1 x

qT2 x
+ v0, 1

)T

. (13)

From this we easily deduce the physical interpretations of
the entries ofK1 andK2.

We point out that a decomposition with calibration matri-
ces is actually possible for generic finite two-slits (not nec-
essarily “parallel”), if we allow for non triangular matrices
K1,K2. Indeed, the four rows of M1,M2 will intersect
in a linear space of dimension one 〈r〉, and the second rows
of K1,K2 can describe how to obtain r from M1,M2.
Imposing that the diagonal elements of K1,K2 are posi-
tive, the decomposition is unique, and there are now 6 + 2
(“analytic” and “3D”) intrinsic, and 6 extrinsic parameters,
summing up to 14 degrees of freedom of our projective two-
slit camera model. On the other hand, the action of general
calibration matrices is not a linear change of image coordi-
nates, and requires changing retinal plane (in fact, we must
switch to a “parallel plane” for the two slits).

Proposition 2. LetA1,A2 define a pushbroom camera

A1 =

[
mT

1 t1
0 1

]
, A2 =

[
mT

2 t2
mT

3 t3

]
, (14)

such that thatm1 andm3 are orthogonal. We can uniquely
write

A1 =K1

[
rT1 t1
0 1

]
,A2 =K2

[
rT2 t2
rT3 t3

]
, (15)

where K1 = diag(1/v, 1), K2 =

[
f u
0 1

]
(with positive v

and f ) and r1, r2, r3 are unit vectors, with r3 orthogonal
to both r1, r2. Here, θ = arccos(r1 · r2) is the angle be-
tween the two slits (or between the direction of motion of the
sensor and the parallel scanning planes). Moreover, v can
be interpreted as the speed of the sensor, and f and u as the
magnification and the principal point of the 1D projection.



Proof. The proof is similar to that of Proposition 1. The de-
composition is unique because of QR-factorization of ma-
trices. The euclidean orbits of “canonical” pushbroom cam-
eras have the form [

rT1 t1
0 1

]
,

[
rT2 t2
rT3 t3

]
, (16)

All these cameras decompose withK1,K2 being the iden-
tity. Finally, the physical interpretation of the parame-
ters follows by noting that composing a pushbroom cam-
era (with rows pT1 , (0, 0, 0, 1)

T and qT1 , q
T
2 ) with calibration

matricesK1,K2 yields

x 7→
(
1

v
pT
1 x, f

qT1 x

qT2 x
+ u, 1

)T

. (17)

Similarly to the case of finite slits, the decomposition
based on calibration matrices can be extended to the case of
arbitrary pushbroom cameras, by allowing for K2 to be a
general 2×2 matrix with positive entries along the diagonal.
This gives a total of 4 + 1 + 6 = 11 free parameters, which
agrees with the degrees of freedom of our affine pushbroom
model. However, a non-upper triangular matrix K2 does
not correspond to a linear change of image coordinates as
in (17), but requires changing retinal plane.

Theorem 1. Let (A1,A2), (B1,B2) be two general pro-
jective two-slit cameras. The set of corresponding image
points u, u′ in P2 is characterized by the following rela-
tion: ∑

ijkl

fijkl

[
u1

u3

]
i

[
u2

u3

]
j

[
u′1
u′3

]
k

[
u′2
u′3

]
l

= 0, (18)

where F = (fijkl) is a 2 × 2 × 2 × 2 “epipolar tensor”.
Its entries are

fijkl = (−1)i+j+k+l·det
[
(A1)

T
3−i (A2)

T
3−j (B1)

T
3−k (B2)

T
3−l

]
.

(19)
Up to projective transformations of P3 there are two con-
figurations (A1,A2), (B1,B2) compatible with a given
epipolar tensor.

Proof. The inverse line projection (6) can be written as

χ(u) =
∑
ij

(−1)i+j(A1)3−i ∧ (A2)3−j

[
u1

u3

]
i

[
u2

u3

]
j

. (20)

The definition of F is simply the condition that χ(u) and
χ(u′) as in (20) are concurrent (see also [5]). Up a global
scale factor, the elements of F do not depend on the scal-
ing of the 2 × 4 matrices, and are fixed by projective
transformations of P3. Hence, assuming that the vectors
(A1)1, (A2)1, (B1)1, (B2)1 are independent (which is true

generically) we can apply a change of reference frame in P3

so that the projection matrices have the form

A1 =

[
1 0 0 0
c11 c12 c13 c14

]
, A2 =

[
0 1 0 0
c21 c22 c23 c24

]
,

B1 =

[
0 0 1 0
c31 c32 c33 c34

]
. B2 =

[
0 0 0 1
c41 c42 c43 c44

]
.

(21)
The 16 entries of F are now (up to sign) the princi-
pal minors of the 4×4-matrix C = (cij): more pre-
cisely, fijkl = (−1)i+j+k+l detC [i−1,j−1,k−1,l−1] where
C [i−1,j−1,k−1,l−1] is the submatrix of C where the se-
lected rows and columns correspond to the binary vector
[i− 1, j − 1, k− 1, l− 1] (for example,C [1,0,0,0] = (c11)).
Determining valid projection matrices (A1,A2), (B1,B2)
given the tensor F , is equivalent to finding the entries of the
4× 4-matrix C given its principal minors. This problem is
studied in [4]. Under generic conditions, the set of all ma-
trices with the same principal minors as C have the form
D−1CD orD−1CTD, whereD is a diagonal matrix [4].
Each of these two families of matrices is a projective con-
figuration of cameras, and the two configurations are in gen-
eral distinct (see the discussion in the next section).

3. Algorithms
3.1. Linear SfM

We assume that we are given pairs of corresponding im-
age points (ui,u

′
i), i = 1, . . . , n, for two unknown two-slit

cameras. Each pair yields a linear constraint on the epipo-
lar tensor F in (18). Hence, if n ≥ 15 correspondences
are given, we can compute a linear estimate for F . For
noisy data, this estimate will not be a valid epipolar tensor,
since tensors of the form (18) are not generic. However, it
is possible to recover projection matrices from only 13 of
the entries of F , which avoids the problem of using a valid
tensor. A simple scheme for this is as follows:

1. We set out to recover the entries of a 4 × 4-matrix C
given its principal minors. Since we can always re-
placeC withD−1CD, whereD is a diagonal matrix,
we can assume that c12 = c13 = c13 = c14 = 1 (at
least generically). Other similar assignments are pos-
sible.

2. Elements on the diagonal and on the first column ofC
are easily computed given (seven of the entries of) F :

• c11 = −f1222; c22 = −f2122; c33 = −f2212;
c44 = −f2221.

• c21 = (c11c22 − f1122)/c12; c31 = (c11c33 −
f1212)/c13; c41 = (c11c44 − f1221)/c14.

Here the elements to the right of the equal signs have
already been assigned. Hence, we recover 10 entries
of C from linear equalities.



3. The remaining six entries of C are pairwise con-
strained by six elements of F . For example, using the
minors f2112, f1112 (corresponding to rows/columns
2, 3 and 1, 2, 3 of C) we deduce that c32 must satisfy
ac232 + bc32 + c = 0 where

a = c13c21

b = f1112 + c11f2112 − c13c31c22 − c12c21c33
c = c12c31c22c33 − c12c31f2112,

(22)

and that c23 = (c22c33 − f2112)/c32. Similar relations
hold for the pairs c24, c42 and c34, c43. This leads to
8 possible matrices C, i.e., a finite number of cam-
era configurations. Note however that the entries f1111
and f2111 of F were never used (which is why we can
assume the tensor to be generic): in an ideal setting
with no noise, exactly two of the 8 solutions will be
consistent with the remaining constraints.

This approach for recovering two-slit projections from
the corresponding epipolar tensor relies on some genericity
assumptions (e.g., we have often divided by element with-
out verifying that it is not zero), and developing an optimal
strategy for this task is outside the scope of our work. Nev-
ertheless, we include as a proof of concept some results.

Experiments. We present a concrete example illustrating
some basic properties of the fundamental tensor. We con-
sider the following pairs of projection matrices:

A1 =

[
−1 7 4 0
8 −1 13 4

]
,A2 =

[
11 6 −2 4
8 −1 13 −5

]
B1 =

[
14 9 −3 8
0 0 0 1

]
,B2 =

[
−3 8 10 3
6 13 5 13

]
(23)

The pair A1,A2 represents a parallel finite two-slit cam-
era, while B1,B2 is a pushbroom camera. The associated
epipolar tensor (18) is

F =

[
0 0

21816 −25650

] [
1906 −2090
−3642 5510

]
[

880 475
18600 −11875

] [
97 −380
−1259 1425

]
,

(24)

where each 4 × 4 matrix represents a block (fijkl)kl for
fixed i, j. Note that f1111 and f1112 are zero, since the sec-
ond rows of A1,A2,B1 are linearly dependent. Using the
approach outlined above, we can use this tensor to recover
two matricesC1,C2 whose principal minors are the entries
of F (we must normalize F so that f2222 = 1) . By con-
struction, C1 and C2 differ only for six elements. We use
these matrices to construct two pairs of two-silt cameras,

namely

A1
1 =

[
1. 0 0 0
−3.87 1. 1. 1.

]
A1

2 =

[
0. 1. 0. 0.

−14.22 8.33 −6.67 −22.17

]
,

B1
1 =

[
0. 0. 1. 0.

0.44 −0.28 0.27 1.14

]
B1

2 =

[
0. 0. 0. 1.
−0.86 0.26 0.15 0.88

]
,

(25)

and

A2
1 =

[
1. 0 0 0
−3.87 1. 1. 1.

]
A2

2 =

[
0. 1. 0. 0.

−14.22 8.33 9.25 4.24

]
,

B2
1 =

[
0. 0. 1. 0.

0.44 0.20 0.27 −0.07

]
B2

2 =

[
0. 0. 0. 1.
−0.86 −1.34 −2.26 0.88

]
.

(26)

Computing the epipolar tensor (18) for both of these pairs
yields F as in (24). On the other hand, the two camera
configurations are not projectively equivalent: indeed, if a
projective transformation between the two existed, it would
need to be the identity, because five of the eight rows coin-
cide. It is straightforward to verify that it is in fact the sec-
ond pair that corresponds to the configuration of the original
cameras (23).

We now try to recover the same cameras using image
correspondences. We consider 70 random points in space,
project them using (23), and add some noise to the images.
In this case, none of original the eight solutions will be ex-
actly consistent with the last two entries of F , however we
can consider the two solutions that minimize an “algebraic
residual” for these constraints. For image sizes of about
100 × 100, and noise with a standard deviation of 10−5,
we recover the following pairs of cameras (that should be
compared with (25)):

A1
1 =

[
1. 0 0 0
−3.97 1. 1. 1.

]
A1

2 =

[
0. 1. 0. 0.

−15.26 8.44 −7.60 −23.18

]
,

B1
1 =

[
0. 0. 1. 0.

0.42 −0.25 0.27 1.17

]
B1

2 =

[
0. 0. 0. 1.
−0.86 0.25 0.14 0.88

]
,

(27)

and

A2
1 =

[
1. 0 0 0
−3.97 1. 1. 1.

]
A2

2 =

[
0. 1. 0. 0.

−15.26 8.44 9.36 4.41

] (28)



B2
1 =

[
0. 0. 1. 0.

0.42 0.20 0.27 −0.07

]
B2

2 =

[
0. 0. 0. 1.
−0.86 −1.30 −2.42 0.88

]
.

(29)

3.2. Minimal SfM

A non-linear “minimal” approach for estimating the
epipolar tensor requires 13 corresponding image points.
Substituting these correspondences in (18), we obtain an
under-determined linear system, which implies that the
epipolar tensor is a linear combination αT1+βT2+γT3 for
some T1, T2, T3 that generate the corresponding null-space.
Since the variety of epipolar tensors has codimension 2 in
P15, we expect to find a finite number of feasible tensors
in this linear space (up to scale factors). According to [4,
Remark 14], the variety of epipolar tensors (that is viewed
there as the projective variety for the principal minors of
4 × 4 matrices) has degree 28. Hence, this minimal ap-
proach should lead to 28 complex solutions for F , and 56
projective configurations of cameras. Using the computer
algebra system Macaulay2 [3] we have verified (over fi-
nite fields) that imposing 13 general linear combinations of
the 16 principal minors of the matrixC (so each linear con-
dition can be viewed as a point correspondence), and fixing
c12 = c13 = c14 = 1, we obtain 56 solutions C in the
algebraic closure of the field.

3.3. Self-calibration

We describe a strategy for self-calibration for two-slit
cameras. We assume that we have recovered a projective
reconstruction Ai

1,A
i
2 for i = 1, . . . , n for finite two-slit

cameras (that we assume were originally “parallel”). We
indicate with Q a “euclidean upgrade”, that is, a 4 × 4-
matrix that describes the transition from a euclidean ref-
erence frame to the frame corresponding to our projective
reconstruction. According to Proposition 1, we may write
Ai

1Q = Ki[R
i
1 | ti1], A

i
2Q = Ki

2[R
i
2 | ti2], where Ri

1,R
i
2

are 2× 3 matrices with orthonormal rows. In particular, for
all i = 1, . . . , k, we have

Ai
1QΩ∗QTAi

1
T
=Ki

1K
i
1
T

Ai
2QΩ∗QTAi

2
T
=Ki

2K
i
2
T
,

(30)

where equality is up to scale and Ω∗ = diag(1, 1, 1, 0).
Geometrically, the matrix Ω∗Q = QΩ∗QT represents the
dual of the absolute conic, in the projective coordinates used
in the reconstruction. The equations (30) identify in fact the
dual of the image of the absolute conic in the two copies of
P1. These are the set of planes containing each slit that are
tangent to the absolute conic in P3.

We now assume that the principal points cameras are
at the “origin”, so that Ki

1,K
i
2 (and hence Ki

1K
i
1

T
and

Ki
2K

i
2

T
) are diagonal. Each row in (30) gives two linear

equations in the elements of Ω∗Q, corresponding to the zeros
in the matrices on the right hand side. For example, impos-
ing that the (1, 2)-entry ofKi

1K
i
1

T
is zero yields

a11a21m11 + a11a22m12 + a11a23m13 + a11a24m14

+ a12a21m21 + a12a22m22 + a12a23m23 + a12a24m24

+ a13a21m31 + a13a22m32 + a13a23m33 + a13a24m34

+ a14a21m41 + a14a22m42 + a14a23m43 + a14a24m44 = 0,
(31)

where Ω∗Q = (mij), and the elements of Ai
1 = (aij)

are known. A sufficient number of views allows us to es-
timate Ω∗Q linearly. Finally, from the singular value de-
composition of Ω∗Q, we can compute a matrix Q′ such that
Q′Ω∗Q′T = Ω∗Q. The matrix Q′ is however not uniquely
determined, and indeed we can actually only recover a sim-
ilarity upgrade, since any similarity transformation will fix
the absolute conic in P3.

Experiments. To apply our self-calibration scheme, we
consider 10 cameras Ai

1,A
i
2, i = 1, . . . , 10, of the form

Ai
1 = Ki

1[R
i
1 | ti1]Q

−1, Ai
2 = Ki

2[R
i
2 | ti2]Q

−1, where
Ri

1, t
i
1,R

i
2, t

i
2 are random parameters for euclidean prim-

itive parallel cameras, Ki
1,K

i
2 are random diagonal cal-

ibration matrices, and Q is a random 4 × 4 matrix de-
scribing a projective change of coordinates. We also add
small amounts of noise to the entries of Ai

1,A
i
2. The ma-

trices Ai
1,A

i
2 represent a projective configuration of two-

slit cameras. Using (30), we can recover an estimate for
Ω∗Q = QΩ∗QT by solving an over-constrained linear sys-
tem (with 40 equations). From this, we compute a matrix
Q′ such that Q′Ω∗Q′T ' Ω∗Q. For our example, the origi-
nal data was

Q =


1.49 0.60 −0.11 −1.15
−1.43 0.88 −0.93 1.52
−0.38 −0.21 1.83 −0.55
0.83 −0.95 −0.63 0.93

 ,

QΩ∗QT =


1. −0.58 −0.34 0.28
−0.58 1.42 −0.52 −0.55
−0.34 −0.52 1.36 −0.49
0.28 −0.55 −0.49 0.77

 ,
(32)

while our estimates are

Q′ =


−0.43 0.21 0.35 0.
0.67 0.26 0.08 0.
−0.04 −0.69 0.03 0.
−0.34 0.26 −0.28 1.

 ,

Q′Ω∗Q′T =


1. −0.59 −0.34 0.29
−0.59 1.44 −0.51 −0.56
−0.34 −0.51 1.35 −0.48
0.29 −0.56 −0.48 0.75

 .
(33)

The matrices Q, Q′ are not close, however one easily ver-
ifies that Q−1Q′ is (almost) a similarity transformation.



In particular, the cameras Ai
1Q
′,Ai

2Q
′, i = 1, . . . , 10

are a “similarity upgrade” of the projective solution. For
example, for the first of our 10 original cameras we had
K1

1 = diag(4.04, 1),K2 = diag(1.37, 1), and indeed

A1
1Q
′ =

[
−2.07 −1.29 3.23 13.25
0.39 −0.91 −0.12 −0.08

]
,

A1
2Q
′ =

[
−0.49 −0.36 1.24 2.81
0.38 −0.91 −0.12 0.53

]
,

(34)

describe a parallel two-slit camera, where the ratios between
the norms of the rows (the “magnifications”) are respec-
tively 4.05 and 1.38.
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